Title
Author
DOI
Article Type
Special Issue
Volume
Issue
Apigenin modulates aging-associated stromal-epithelial cross-talk in prostate cells
La apigenina modula la comunicación cruzada estromal-epitelial asociada al envejecimiento en las células de la próstata
1Department of Reproductive Biology, All India Institute of Medical Sciences, 110029 New Delhi, India
DOI: 10.22514/j.androl.2025.014 Vol.23,Issue 2,June 2025 pp.32-41
Submitted: 20 August 2024 Accepted: 22 October 2024
Published: 30 June 2025
*Corresponding Author(s): Deepak Pandey E-mail: deepakpandey@aiims.edu
Background: The therapeutic potential of phytonutrients has gained significant attention due to their bioactive properties and effectiveness in disease management, including cancers. Apigenin, a flavone abundant in fruits and vegetables is known for its anti-inflammatory, antioxidant and anti-cancer effects. Methods: In this study, we investigated the ameliorative potential of apigenin on aberrant proliferation of normal prostate epithelial cells, driven by the paracrine factors of stromal origin, when conditioned with estradiol (20 pM) and dihydrotestosterone (10 nM). Results: Apigenin (5 µM) significantly inhibited the aberrant epithelial cell proliferation, both in isolation as well as in stromal co-culture conditions. Notably, the treatment reduced spheroid size and branching patterns three-dimensional (3D) overlay culture models. Live cell staining with Calcein acetoxymethyl ester (Calcein AM) revealed a marked decrease in viable cell numbers following treatment. Additionally, apigenin increased the expression of estrogen receptor beta (ERβ), a recognized tumor suppressor and induced apoptosis, while also inhibiting stromal cell proliferation. Conclusions: These results provide valuable insights into the preventive potential of apigenin against prostate pathologies driven by stromal-epithelial interactions, offering a foundation for further research into dietary strategies for cancer prevention.
Resumen
Antecedentes: El potencial terapéutico de los fitonutrientes ha ganado una atención significativa debido a sus propiedades bioactivas y su eficacia en el manejo de enfermedades, incluidos los cánceres. La apigenina, una flavona abundante en frutas y verduras, es conocida por sus efectos antiinflamatorios, antioxidantes y anticancerígenos. Métodos: En este estudio, investigamos el potencial mejorador de la apigenina en la proliferación aberrante de células epiteliales de próstata normales, impulsada por los factores paracrinos de origen estromal, cuando se acondicionó con estradiol (20 pM) y dihidrotestosterona (10 nM). Resultados: La apigenina (5 µM) inhibió significativamente la proliferación aberrante de células epiteliales, tanto en condiciones de aislamiento como en condiciones de co-cultivo estromal. En particular, el tratamiento redujo el tamaño de los esferoides y los patrones de ramificación en los modelos de cultivo de superposición tridimensional (3D). La tinción de células vivas con Calcein acetoxymethyl ester (Calcein AM) reveló una marcada disminución en el número de células viables después del tratamiento. Además, la apigenina aumentó la expresión del receptor de estrógeno beta (ERβ), un supresor tumoral reconocido, e indujo la apoptosis, al tiempo que inhibía la proliferación de células del estroma. Conclusiones: Estos resultados brindan información valiosa sobre el potencial preventivo de la apigenina contra las patologías de próstata impulsadas por interacciones estromales-epiteliales, lo que ofrece una base para futuras investigaciones sobre estrategias dietéticas para la prevención del cáncer.
Apigenin; Prostate; Stromal-epithelial interaction; Sex-steroids (Estrogen, DHT); Endocrine cancers
Palabras Clave
Apigenina; Próstata; Interacción estromal-epitelial; Esteroides sexuales (estrógeno, DHT); Cánceres endocrinos
A. Muni Nagesh,Nandana Devi,Surabhi Gupta,Pradeep Kumar Chaturvedi,Neeraj Kumar,Deepak Pandey. Apigenin modulates aging-associated stromal-epithelial cross-talk in prostate cellsLa apigenina modula la comunicación cruzada estromal-epitelial asociada al envejecimiento en las células de la próstata. Revista Internacional de Andrología. 2025. 23(2);32-41.
[1] Oseni SO, Naar C, Pavlović M, Asghar W, Hartmann JX, Fields GB, et al. The molecular basis and clinical consequences of chronic inflammation in prostatic diseases: prostatitis, benign prostatic hyperplasia, and prostate cancer. Cancers. 2023; 15: 3110.
[2] Ng M, Leslie SW, Baradhi KM. Benign prostatic hyperplasia. StatPearls: Treasure Island (FL). 2024.
[3] Bergengren O, Pekala KR, Matsoukas K, Fainberg J, Mungovan SF, Bratt O, et al. 2022 update on prostate cancer epidemiology and risk factors—a systematic review. European Urology. 2023; 84: 191–206.
[4] Hughes T, Harper P, Somani BK. Treatment algorithm for management of benign prostatic obstruction: an overview of current techniques. Life. 2023; 13: 2077.
[5] Le TK, Duong QH, Baylot V, Fargette C, Baboudjian M, Colleaux L, et al. Castration-resistant prostate cancer: from uncovered resistance mechanisms to current treatments. Cancers. 2023; 15: 5047.
[6] Figiel S, Cancel-Tassin G, Mills IG, Lamb AD, Fromont G, Cussenot O. Molecular anatomy of prostate cancer and its implications in active surveillance and early intervention strategies. Anatomia. 2023; 2: 300–319.
[7] Espinoza JL, Mathey LI. Permissive role of estrogens in prostate diseases. In Marsh C (ed.) Estrogens-recent advances (pp. 1–10). IntechOpen: London. 2022.
[8] Araujo AB, Wittert GA. Endocrinology of the aging male. Best Practice & Research Clinical Endocrinology & Metabolism. 2011; 25: 303–319.
[9] Cannarella R, Condorelli RA, Barbagallo F, La Vignera S, Calogero AE. Endocrinology of the aging prostate: current concepts. Frontiers in Endocrinology. 2021; 12: 554078.
[10] Achi NK, Eleazu CO, Onyeabo C, Kalu W, Eleazu K. Syzygium malaccense leaves methanol extract modulate some biochemical and inflammatory markers and prostate histology of testosterone-estradiol valerate induced benign prostatic hyperplasia in rats. Avicenna Journal of Phytomedicine. 2024; 14: 305–324.
[11] Ho SM. Estrogens and anti‐estrogens: key mediators of prostate carcinogenesis and new therapeutic candidates. Journal of Cellular Biochemistry. 2004; 91: 491–503.
[12] Rudzińska A, Juchaniuk P, Oberda J, Wiśniewska J, Wojdan W, Szklener K, et al. Phytochemicals in cancer treatment and cancer prevention—review on epidemiological data and clinical trials. Nutrients. 2023; 15: 1896.
[13] Liu F, Xu J, Wang X, Peng Y, Wang P, Si C, et al. Dietary flavonoid intake and risk of hormone-related cancers: a population-based prospective cohort study. Phytomedicine. 2024; 133: 155950.
[14] Li M, Qian M, Jiang Q, Tan B, Yin Y, Han X. Evidence of flavonoids on disease prevention. Antioxidants. 2023; 12: 527.
[15] Allemailem KS, Almatroudi A, Alharbi HO, AlSuhaymi N, Alsugoor MH, Aldakheel FM, et al. Apigenin: a bioflavonoid with a promising role in disease prevention and treatment. Biomedicines. 2024; 12: 1353.
[16] Singh A, Singh J, Parween G, Khator R, Monga V. A comprehensive review of apigenin a dietary flavonoid: biological sources, nutraceutical prospects, chemistry and pharmacological insights and health benefits. Critical Reviews in Food Science and Nutrition. 2024; 1–37.
[17] Pandey P, Khan F, Upadhyay TK. Deciphering the modulatory role of apigenin targeting oncogenic pathways in human cancers. Chemical Biology & Drug Design. 2023; 101: 1446–1458.
[18] Ale-Esmaiel R, Razavi-Toosi SM. Biological properties and therapeutic effects of apigenin and its evaluation on several types of cancer. Journal of Current Oncology and Medical Sciences. 2023; 3: 650–662.
[19] Naponelli V, Rocchetti MT, Mangieri D. Apigenin: molecular mechanisms and therapeutic potential against cancer spreading. International Journal of Molecular Sciences. 2024; 25: 5569.
[20] Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003; 30: 256–268.
[21] Devi N, Nagesh AM, Jala MA, Gupta S, Chaturvedi PK, Kumar N, et al. Role of green tea catechins in modulating stromal-epithelial interaction in prostate cells. Indian Journal of Natural Products and Resources. 2023; 14: 28–36.
[22] Di Carlo E, Sorrentino C. The multifaceted role of the stroma in the healthy prostate and prostate cancer. Journal of Translational Medicine. 2024; 22: 825.
[23] Prins GS. Developmental estrogenization: prostate gland reprogramming leads to increased disease risk with aging. Differentiation. 2021; 118: 72–81.
[24] Tahsin S, Sane NS, Cernyar B, Jiang L, Zohar Y, Lee BR, et al. AR loss in prostate cancer stroma mediated by NF-κB and p38-MAPK signaling disrupts stromal morphogen production. Oncogene. 2024; 43: 2092–2103.
[25] Zhu ML, Kyprianou N. Androgen receptor and growth factor signaling cross-talk in prostate cancer cells. Endocrine-Related Cancer. 2008; 15: 841–849.
[26] Pejčić T, Todorović Z, Đurašević S, Popović L. Mechanisms of prostate cancer cells survival and their therapeutic targeting. International Journal of Molecular Sciences. 2023; 24: 2939.
[27] Ellem SJ, Risbridger GP. Aromatase and regulating the estrogen: androgen ratio in the prostate gland. The Journal of Steroid Biochemistry and Molecular Biology. 2010; 118: 246–251.
[28] Devlin CM, Simms MS, Maitland NJ. Benign prostatic hyperplasia–what do we know? BJU international. 2021; 127: 389–399.
[29] Taitt HE. Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. American Journal of Men’s Health. 2018; 12: 1807–1823.
[30] Adhikari T, Saha P. Mechanistic insights of a natural bioactive compound: apigenin. Pharmacognosy Research. 2024; 16: 435–448.
[31] Bektic J, Guggenberger R, Spengler B, Christoffel V, Pelzer A, Berger AP, et al. The flavonoid apigenin inhibits the proliferation of prostatic stromal cells via the MAPK-pathway and cell-cycle arrest in G1/S. Maturitas. 2006; 55: S37–S46.
[32] Kaur P, Shukla S, Gupta S. Plant flavonoid apigenin inactivates Akt to trigger apoptosis in human prostate cancer: an in vitro and in vivo study. Carcinogenesis. 2008; 29: 2210–2217.
[33] Shukla S, Kanwal R, Shankar E, Datt M, Chance MR, Fu P, et al. Apigenin blocks IKKα activation and suppresses prostate cancer progression. Oncotarget. 2015; 6: 31216–31232.
[34] Shukla S, Gupta S. Molecular targets for apigenin-induced cell cycle arrest and apoptosis in prostate cancer cell xenograft. Molecular cancer therapeutics. 2006; 5: 843–852.
[35] Shukla S, Gupta S. Molecular mechanisms for apigenin‐induced cell‐cycle arrest and apoptosis of hormone refractory human prostate carcinoma DU145 cells. Molecular Carcinogenesis. 2004; 39: 114–126.
[36] Gupta S, Afaq F, Mukhtar H. Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene. 2002; 21: 3727–3738.
[37] Mak P, Leung YK, Tang WY, Harwood C, Ho SM. Apigenin suppresses cancer cell growth through ERβ. Neoplasia. 2006; 8: 896–904.
Science Citation Index Expanded (SCIE)
Índice Bibliográfico Español en Ciencias de la Salud (IBECS)
Scopus: CiteScore 1.7 (2024)
Top