Title
Author
DOI
Article Type
Special Issue
Volume
Issue
Grape sustains male fertility in lead acetate induced testicular dysfunction more efficiency than ginger
La uva favorece la fertilidad masculina en casos de disfunción testicular inducida por acetato de plomo con mayor eficacia que el jengibre
1Department of Medical Physiology, Medical Research and Clinical Studies Institute, National Research Centre, 12622 Giza, Egypt
2Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
DOI: 10.22514/j.androl.2025.016 Vol.23,Issue 2,June 2025 pp.20-31
Submitted: 02 March 2025 Accepted: 18 April 2025
Published: 30 June 2025
*Corresponding Author(s): Khaled Koriem E-mail: km.koriem@nrc.sci.eg
Background: Lead acetate is an environmental toxin that causes male dysfunction while grape and ginger have antioxidant activities. The ability to prevent infertility and optimal male fertilization of ginger and grape in the lead acetate-treated group were evaluated in this study. Methods: The study included 36 male albino rats arranged in six equal groups; Control, Grape (75 mg/kg), Ginger (500 mg/kg), Lead acetate (30 mg/kg), Grape (75 mg/kg) prior to lead acetate (30 mg/kg) and Ginger (500 mg/kg) prior to lead acetate (30 mg/kg) groups, respectively. Dehydroepiandrosterone sulfate, luteinizing and follicle-stimulating hormones, serum sex hormone-binding globulin and testosterone were measured in the serum. The testis tests include cholesterol, total protein, 3β-hydroxysteroid dehydrogenase and glucose-6-phosphate dehydrogenase were detected. The hypothalamus, testis and sperm antioxidants (superoxide dismutase, glutathione, and malondialdehyde) were measured. Sperm monoclonal proliferating antibody Ki-67 was assessed together with sperm counts, motility, and abnormalities. The testis, sperm and hypothalamus adenosine 5′-triphosphatase (ATPase) and nuclear factor-kappa B activities were examined. Results: Administration of lead acetate orally reduced levels of sodium/potassium-ATPase activity, sperm count and motility, dehydroepiandrosterone sulfate, glutathione, serum testosterone and superoxide dismutase, whereas elevated levels of total protein, cholesterol, luteinizing hormone, sex hormone-binding globulin, serum follicle-stimulating hormone, glucose-6-phosphate dehydrogenase, 3β-hydroxysteroid dehydrogenase and nuclear factor kappa B levels. Lead acetate induced abnormal sperm, as well as the proportion of first spermatocyte, second spermatocyte, spermatid and spermatogonia to higher levels. Additionally, every parameter that was previously described came back to be near control levels after the oral treatment with ginger and grape prior to lead acetate-treated group. Conclusions: In testicular toxicity caused by lead acetate, grape preserves male fertility and conception more effectively than ginger.
Resumen
Antecedentes: El acetato de plomo es una toxina ambiental que causa disfunción masculina, mientras que la uva y el jengibre tienen actividades antioxidantes. En este estudio se evaluó la capacidad de prevenir la infertilidad y la fertilización masculina óptima del jengibre y la uva en el grupo tratado con acetato de plomo. Métodos: El estudio incluyó 36 ratas albinas macho dispuestas en seis grupos iguales; Control, Uva (75 mg/kg), Jengibre (500 mg/kg), Acetato de plomo (30 mg/kg), Uva (75 mg/kg) antes del acetato de plomo (30 mg/kg) y Jengibre (500 mg/kg) antes del acetato de plomo (30 mg/kg), respectivamente. Se midieron en el suero el sulfato de dehidroepiandrosterona, las hormonas luteinizante y estimulante del folículo, la globulina transportadora de hormonas sexuales séricas y la testosterona. Las pruebas de testículo incluyen colesterol, proteína total, 3β-hidroxiesteroide deshidrogenasa y glucosa-6-fosfato deshidrogenasa. Se midieron los antioxidantes del hipotálamo, los testículos y los espermatozoides (superóxido dismutasa, glutatión y malondialdehído). Se evaluó el anticuerpo monoclonal proliferante Ki-67 en los espermatozoides, junto con el recuento, la motilidad y las anomalías espermáticas. Se examinaron las actividades de la ATPasa y el factor nuclear kappa B en los testículos, los espermatozoides y el hipotálamo. Resultados: La administración oral de acetato de plomo redujo los niveles de actividad de la ATPasa de sodio/potasio, el recuento y la motilidad espermática, el sulfato de dehidroepiandrosterona, el glutatión, la testosterona sérica y la superóxido dismutasa, mientras que los niveles elevados de proteína total, colesterol, hormona luteinizante, globulina transportadora de hormonas sexuales, hormona folículo estimulante sérica, glucosa-6-fosfato deshidrogenasa, 3β-hidroxiesteroide deshidrogenasa y los niveles del factor nuclear kappa B. El acetato de plomo indujo espermatozoides anormales, así como una mayor proporción de primer espermatocito, segundo espermatocito, espermátida y espermatogonias. Además, todos los parámetros descritos previamente se mantuvieron cerca de los niveles control tras el tratamiento oral con jengibre y uva, antes del grupo tratado con acetato de plomo. Conclusiones: En la toxicidad testicular causada por acetato de plomo, la uva preserva la fertilidad masculina y la concepción con mayor eficacia que el jengibre.
Grape; Ginger; Lead acetate; Hypothalamus; Testis; Sperm; Oxidative stress
Palabras Clave
Uva; Jengibre; Acetato de plomo; Hipotálamo; Testículo; Esperma; Estrés oxidativo
Khaled Koriem,Shamis Serour. Grape sustains male fertility in lead acetate induced testicular dysfunction more efficiency than gingerLa uva favorece la fertilidad masculina en casos de disfunción testicular inducida por acetato de plomo con mayor eficacia que el jengibre. Revista Internacional de Andrología. 2025. 23(2);20-31.
[1] Yu W , Li M, Liang S, Xu Q, Zhang P, Hou H, et al. Novel PbO@C composite material directly derived from spent lead-acid batteries by one-step spray pyrolysis process. Waste Management. 2023; 165: 51–58.
[2] Kumar V, Swain HS, Upadhyay A, Ramteke MH, Sarkar DJ, Roy S, et al. Bioaccumulation of potentially toxic elements in commercially important food fish species from lower Gangetic stretch: food security and human health risk assessment. Biological Trace Element Research. 2024; 202: 1235–1248.
[3] Jomova K, Alomar SY, Nepovimova E, Kuca K, Valko M. Heavy metals: toxicity and human health effects. Archives of Toxicology. 2025; 99: 153–209.
[4] Almashhadany DA, Rashid RF, Altaif KI, Mohammed SH, Mohammed HI, Al-Bader SM. Heavy metal(loid) bioaccumulation in fish and its implications for human health. Italian Journal of Food Safety. 2024; 14: 12782.
[5] Khafaji SS. Antioxidant, anti-inflammatory, and anti-reprotoxic effects of kaempferol and vitamin E on lead acetate-induced testicular toxicity in male rats. Open Veterinary Journal. 2023; 13: 1683–1695.
[6] Zhao ZM, Mei S, Zheng QY, Wang J, Yin YR, Zhang JJ, et al. Melatonin or vitamin C attenuates lead acetate-induced testicular oxidative and inflammatory damage in mice by inhibiting oxidative stress mediated NF-κB signaling. Ecotoxicology and Environmental Safety. 2023; 264: 115481.
[7] Asiwe JN, Ekene EN, Agbugba LC, Moke EG, Akintade AV, Ben-Azu B, et al. Ginkgo biloba supplement abates lead-induced endothelial and testicular dysfunction in Wistar rats via up-regulation of Bcl-2 protein expression, pituitary-testicular hormones and down-regulation of oxido-inflammatory reactions. Journal of Trace Elements in Medicine and Biology. 2023; 79: 127216.
[8] Milinčić DD, Stanisavljević NS, Pešić MM, Kostić AŽ, Stanojević SP, Pešić MB. The bioaccessibility of grape-derived phenolic compounds: an overview. Foods. 2025; 14: 607.
[9] Zapata-García S, Berríos P, Temnani A, Espinosa PJ, Monllor C, Pérez-Pastor A. Combined use of biostimulation and deficit irrigation improved the fruit quality in table grape. Plants. 2025; 14: 485.
[10] Lopes JDC, Madureira J, Margaça FMA, Cabo Verde S. Grape pomace: a review of its bioactive phenolic compounds, health benefits, and applications. Molecules. 2025; 30: 362.
[11] Radeva L, Yoncheva K. Resveratrol-a promising therapeutic agent with problematic properties. Pharmaceutics. 2025; 17: 134.
[12] Cozzolino D. Phenolics and spectroscopy: challenges and successful stories in the grape and wine industry. Journal of the Science of Food and Agriculture. 2025; 105: 1408–1412.
[13] Prata C, Zalambani C, Rossi F, Rossello S, Cerchiara T, Cappadone C, et al. Nutrients and nutraceuticals from Vitis vinifera L. pomace: biological activities, valorization, and potential applications. Nutrients. 2025; 17: 583.
[14] Soltani S, Asoudeh F, Motallaei M, Kolahdouz-Mohammadi R, Forbes SC, Abdollahi S. Whole grapes or grape products on body weight, anthropometrics, and adipokines: systematic review and meta-analysis of randomized controlled trials. International Journal of Food Sciences and Nutrition. 2025; 76: 122–133.
[15] Jaa A, de Moura PHB, Ruiz-Larrea MB, Ruiz Sanz JI, Richard T. Potential transformation of food resveratrol: mechanisms and biological impact. Molecules. 2025; 30: 536.
[16] Rao PP. Phytochemicals in obesity management: mechanisms and clinical perspectives. Current Nutrition Reports. 2025; 14: 17.
[17] Dzwonkowski M, Bahirwani J, Rollins S, Muratore A, Christian V, Schneider Y. Selected use of complementary and alternative medicine (CAM) agents in IBD. Current Gastroenterology Reports. 2025; 27: 1.
[18] Wu Z, Fu X, Jing H, Huang W, Li X, Xiao C, et al. Herbal medicine for the prevention of chemotherapy-induced nausea and vomiting in patients with advanced colorectal cancer: a prospective randomized controlled trial. Journal of Ethnopharmacology. 2024; 325: 117853.
[19] Matin M, Joshi T, Wang D, Tzvetkov NT, Matin FB, Wierzbicka A, et al. Effects of ginger (Zingiber officinale) on the hallmarks of aging. Biomolecules. 2024; 14: 940.
[20] Zhang C, Rao A, Chen C, Li Y, Tan X, Long J, et al. Pharmacological activity and clinical application analysis of traditional Chinese medicine ginger from the perspective of one source and multiple substances. Chinese Medicine. 2024; 19: 97.
[21] Li S, Cao J, Yang Z, Jin S, Yang L, Chen H. Licorice and dried ginger decoction inhibits inflammation and alleviates mitochondrial dysfunction in chronic obstructive pulmonary disease by targeting siglec-1. International Immunopharmacology. 2025; 146: 113789.
[22] Xiang S, Jian Q, Chen W, Xu Q, Li J, Wang C, et al. Pharmacodynamic components and mechanisms of ginger (Zingiber officinale) in the prevention and treatment of colorectal cancer. Journal of Ethnopharmacology. 2024; 324: 117733.
[23] Ghosh S, Das B, Jana S, Singh KO, Sharma N, Mukherjee PK, et al. Mechanistic insight into neuroprotective effect of standardized ginger chemo varieties from Manipur, India in scopolamine induced learning and memory impaired mice. Metabolic Brain Disease. 2025; 40: 101.
[24] Ahmed Abdelmawgood I, Sayed AM, Mohamed OA, Ali Ramadan S, Waleed Farg J, Saad W, et al. Ginger and its constituents in asthma: a mini-review. Journal of Asthma. 2024; 61: 1392–1401.
[25] Famurewa AC, Akhigbe RE, George MY, Adekunle YA, Oyedokun PA, Akhigbe TM, et al. Mechanisms of ferroptotic and non-ferroptotic organ toxicity of chemotherapy: protective and therapeutic effects of ginger, 6-gingerol and zingerone in preclinical studies. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2025; 398: 4747–4778.
[26] Ileriturk M, Benzer F, Aksu EH, Yildirim S, Kandemir FM, Dogan T, et al. Chrysin protects against testicular toxicity caused by lead acetate in rats with its antioxidant, anti-inflammatory, and antiapoptotic properties. Journal of Food Biochemistry. 2021; 45: e13593.
[27] Afkhami Fathabad A, Shekarforoush S, Hoseini M, Ebrahimi Z. Attenuation of sulfite-induced testicular injury in rats by zingiber officinale roscoe. Journal of Dietary Supplements. 2018; 15: 398–409.
[28] El-Ashmawy IM, Saleh A, Salama OM. Effects of marjoram volatile oil and grape seed extract on ethanol toxicity in male rats. Basic and Clinical Pharmacology and Toxicology. 2007; 101: 320–327.
[29] Koriem KMM, Fathi GE, Salem HA, Akram NH, Gamil SA. Protective role of pectin against cadmium-induced testicular toxicity and oxidative stress in rats. Toxicology Mechanisms and Methods. 2013; 23: 263–272.
[30] Gupta RS, Kachhawa JB, Chaudhary R. Antifertility effects of methanolic pod extract of Albizzia lebbeck (L.) Benth in male rats. Asian Journal of Andrology. 2004; 62: 155–159.
[31] Aydogan M, Barlas N. Effects of maternal 4-tert-octylphenol exposure on the reproductive tract of male rats at adulthood. Reproductive Toxicology. 2006; 223: 455–460.
[32] Zhang M, Gu L, Zheng P, Chen Z, Dou X, Qin Q, et al. Improvement of cell counting method for Neubauer counting chamber. Journal of Clinical Laboratory Analysis. 2020; 34: e23024.
[33] Boyers SP, Davis RO, Katz DF. Automated semen analysis. Current Problems in Obstetrics, Gynecology and Fertility. 1989; 12: 167–200.
[34] Gamaro GD, Emilio LS, Cristiane M, Martha EP, Angela TSW, Carla D. Reduction of hippocampal Na, K-ATPase activity in rats subjected to an experimental model of depression. Neurochemical Research. 2003; 28: 1339–1344.
[35] Shen Y, Teng L, Qu Y, Liu J, Zhu X, Chen S, et al. Anti-proliferation and anti-inflammation effects of corilagin in rheumatoid arthritis by downregulating NF-kappaB and MAPK signaling pathways. Journal of Ethnopharmacology. 2002; 284: 114791.
[36] Mehrjerdi FZ, Raeini AS, Zebhi FS, Hafizi Z, Mirjalili R, Aghda FA. Berberine hydrochloride improves cognitive function and hippocampal antioxidant status in subchronic and chronic lead poisoning. Chinese Journal of Integrative Medicine. 2025; 31: 49–54.
[37] Ghasemzadeh Hasankolaei M, Evans NP, Elcombe CS, Lea RG, Sinclair KD, Padmanabhan V, et al. In-utero exposure to real-life environmental chemicals disrupts gene expression within the hypothalamo-pituitary-gonadal axis of prepubertal and adult rams. Environmental Research. 2025; 264: 120303.
[38] Pan Y, Fan K, Zong L, Luo Y, Ni X, Chen D, et al. Molecular insight into reproductive toxicity and transgenerational effects of Cadmium exposure on Drosophila melanogaster. Ecotoxicology and Environmental Safety. 2025; 291: 117870.
[39] Badraoui R, Gargouri M, Brahmi F, Ben-Nasr H, Bahrini I, Soussi A. Protective effects of Juglans regia oil on lead acetate-induced reprotoxicity in rats: an antioxidant, histological and computational molecular study. Journal of the Science of Food and Agriculture. 2025; 105: 2515–2526.
[40] Elsayed DH, Nagadi SA, Abdelrazek HMA, El-Hawy AS, El-Bassiony MF, Helmy SA, et al. Dietary nannochloropsis oculata ameliorates lead acetate induced reproductive toxicity in Barki rams: NF-κB and cytokines pathways. Ecotoxicology and Environmental Safety. 2025; 289: 117452.
[41] Koriem KMM. Proteomic approach in human health and disease: preventive and cure studies. Asian Pacific Journal of Tropical Biomedicine. 2018; 8: 226–236.
[42] Koriem KMM. Lipidome is lipids regulator in gastrointestinal tract and it is a life collar in COVID-19:0020a review. World Journal of Gastroenterology. 2021; 126: 37–54.
[43] Mukherjee AG, V G A. Sex hormone-binding globulin and its critical role in prostate cancer: a comprehensive review. The Journal of Steroid Biochemistry and Molecular Biology. 2025; 245: 106606.
[44] Besong EE, Ashonibare PJ, Akhigbe TM, Obimma JN, Akhigbe RE. Sodium acetate abates lead-induced sexual dysfunction by upregulating testosterone-dependent eNOS/NO/cGMP signaling and activating Nrf2/HO-1 in male Wistar rat. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2024; 397: 1233–1243.
[45] Fadda LM, Alsharidah R, Hasan IH. Turmeric and vitamin C mitigate testicular atrophy induced by lead diacetate via regulation of GRP-78/17β-HSD pathways in rat’s model. Andrologia. 2021; 53: e14120.
[46] Akbari A, Nasiri K, Heydari M, Mosavat SH, Iraji A. The protective effect of hydroalcoholic extract of zingiber officinale roscoe (Ginger) on ethanol-induced reproductive toxicity in male rats. Journal of Evidence-Based Complementary and Alternative Medicine. 2017; 22: 609–617.
[47] Evcimen M, Aslan R, Gulay MS. Protective effects of polydatin and grape seed extract in rats exposed to cadmium. Drug and Chemical Toxicology. 2020; 43: 225–233.
[48] Alkhedaide A, Alshehri ZS, Sabry A, Abdel-Ghaffar T, Soliman MM, Attia H. Protective effect of grape seed extract against cadmium-induced testicular dysfunction. Molecular Medicine Reports. 2016; 13: 3101–3109.
[49] Morsi AA, Shawky LM, El Bana EA. The potential gonadoprotective effects of grape seed extract against the histopathological alterations elicited in an animal model of cadmium-induced testicular toxicity. Folia Morphology. 2020; 79: 767–776.
[50] Pires VC, Gollücke AP, Ribeiro DA, Lungato L, D’Almeida V, Aguiar O. Grape juice concentrate protects reproductive parameters of male rats against cadmium-induced damage: a chronic assay. British Journal of Nutrition. 2013; 110: 2020–2029.
[51] Lamas CA, Cuquetto-Leite L, do Nascimento da Silva E, Thomazini BF, Cordeiro GDS, Predes FS, et al. Grape juice concentrate alleviates epididymis and sperm damage in cadmium-intoxicated rats. International Journal of Experimental Pathology. 2017; 98: 86–99.
Science Citation Index Expanded (SCIE)
Índice Bibliográfico Español en Ciencias de la Salud (IBECS)
Scopus: CiteScore 1.7 (2024)
Top