Title
Author
DOI
Article Type
Special Issue
Volume
Issue
Sperm mitochondrial membrane potential: relationship with seminal parameters and lifestyle habits
El potencial de membrana mitocondrial espermático: relación con parámetros seminales y hábitos de vida
1Biotechnology Department, Faculty of Sciences, University of Alicante, 03690 Alicante, Spain
2Human Fertility Cathedra, University of Alicante, 03690 Alicante, Spain
DOI: 10.22514/j.androl.2025.019 Vol.23,Issue 2,June 2025 pp.57-66
Submitted: 04 November 2024 Accepted: 17 December 2024
Published: 30 June 2025
*Corresponding Author(s): María José Gómez-Torres E-mail: mjose.gomez@ua.es
Background: Mitochondrial membrane potential (MMP) is indicative of mitochondrial activity. Hence, MMP values can be used as a sperm functionality and motility indicator. Although it is recognized that MMP is influenced by lifestyle and seminal parameters, the relationship is not completely clear due to the diversity of factors involved and limitations in study design. Therefore, further research is needed to establish direct causal connections. The present study investigated the relationship between MMP with conventional and physiological sperm parameters, and with modifiable lifestyle factors. Methods: To achieve this, 32 seminal samples obtained from male donors were analysed according to World Health Organization (WHO) guidelines. The MMP was assessed using JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide) in sperm from fresh samples and analysed by fluorescence microscopy. Furthermore, a survey was performed to assess the lifestyle habits of the donors. We conducted a comprehensive analysis of JC-1 in sperm, differentiating for the first time four colours based on MMP fluorescence: high mitochondrial MMP (red), medium-high MMP (orange), low mitochondrial MMP (green), and very low MMP (no fluorescence). Percentages were added to obtain two populations: total high and total low MMP. Results: Our results showed that lifestyle habits can impact on MMP values. Furthermore, sperm MMP values were correlated with conventional seminal parameters, and with the concentration of motile sperm after 1 h of in vitro capacitation. Additionally, men with total high MMP values higher than 60.05% achieved a higher concentration of sperm cells after 1 and 4 h of in vitro capacitation. Conclusions: Research on MMP and its influence on male fertility will contribute to a better understanding of reproductive biology and to develop targeted interventions for infertility.
Resumen
Antecedentes: El potencial de membrana mitocondrial (MMP, según sus siglas en inglés) es un indicador de la actividad mitocondrial, por lo que sus valores pueden utilizarse como un indicador de la funcionalidad y motilidad espermática. Aunque se conoce que el MMP está influenciado por los hábitos de vida y parámetros seminales, la relación no está completamente clara debido a la diversidad de factores involucrados y las limitaciones en el diseño de diferentes estudios. Por lo tanto, se necesita investigación adicional para establecer conexiones causales directas. El presente estudio investigó la relación entre el MMP y los parámetros espermáticos convencionales y fisiológicos, y con factores de estilo de vida modificables. Métodos: Para lograrlo, se analizaron 32 muestras seminales obtenidas de donantes masculinos de acuerdo con las directrices de la Organización Mundial de la Salud (OMS). El MMP se evaluó utilizando el marcador JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide) en espermatozoides de muestras seminales frescas, mediante su análisis con microscopía de fluorescencia. Además, se realizó una encuesta para evaluar los hábitos de vida de los donantes. Se realizó un análisis exhaustivo de JC-1 en espermatozoides, diferenciando por primera vez cuatro colores en función de la fluorescencia emitida por la pieza intermedia: MMP mitocondrial alto (rojo), MMP medio-alto (naranja), MMP mitocondrial bajo (verde) y MMP muy bajo (sin fluorescencia). Por otra parte, los porcentajes de MMP fueron sumados para obtener dos poblaciones espermáticas según su MMP: MMP total alto y MMP total bajo. Resultados: Nuestros resultados mostraron que los hábitos de vida pueden afectar los valores de MMP. Además de esto, los valores de MMP se correlacionaron con parámetros seminales convencionales y con la concentración de espermatozoides mótiles después de 1 h de capacitación in vitro. Además, los hombres con valores de MMP total alto superiores al 60.05% lograron una mayor concentración de espermatozoides después de 1 y 4 h de capacitación in vitro. Conclusiones: La investigación sobre MMP y su influencia en la fertilidad masculina contribuirá a una mejor comprensión de la biología reproductiva y al desarrollo de intervenciones específicas dirigidas al tratamiento de la infertilidad.
Male fertility; Mitochondrial membrane potential; MMP; Seminal parameters; Lifestyle habits; JC-1; Sperm capacitation
Palabras Clave
Fertilidad masculina; Potencial de membrana mitocondrial; MMP; Parámetros seminales; Hábitos de vida; JC-1; Capacitación espermática
Andrea López-Botella,Miranda Hernández-Falcó,Paula Sáez-Espinosa,Laura Robles-Gómez,María José Gómez-Torres. Sperm mitochondrial membrane potential: relationship with seminal parameters and lifestyle habitsEl potencial de membrana mitocondrial espermático: relación con parámetros seminales y hábitos de vida. Revista Internacional de Andrología. 2025. 23(2);57-66.
[1] Wang C, Swerdloff RS. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertility and Sterility. 2014; 102: 1502–1507.
[2] Krausz C, Farnetani G. Clinical interpretation of semen analysis. Practical Clinical Andrology. 2023; 9: 173–184.
[3] Dcunha R, Hussein RS, Ananda H, Kumari S, Adiga SK, Kannan N, et al. Current insights and latest updates in sperm motility and associated applications in assisted reproduction. Reproductive Sciences. 2022; 29: 7–25.
[4] Gill K, Machałowski T, Harasny P, Grabowska M, Duchnik E, Piasecka M. Low human sperm motility coexists with sperm nuclear DNA damage and oxidative stress in semen. Andrology. 2024; 12: 1154–1169.
[5] Ferramosca A, Zara V. Bioenergetics of mammalian sperm capacitation. BioMed Research International. 2014; 2014: 902953.
[6] Irigoyen P, Mansilla S, Castro L, Cassina A, Sapiro R. Mitochondrial function and reactive oxygen species production during human sperm capacitation: unraveling key players. FASEB Journal. 2024; 38: e23486.
[7] Costa J, Braga PC, Rebelo I, Oliveira PF, Alves MG. Mitochondria quality control and male fertility. Biology. 2023; 12: 827.
[8] Vahedi Raad M, Firouzabadi AM, Tofighi Niaki M, Henkel R, Fesahat F. The impact of mitochondrial impairments on sperm function and male fertility: a systematic review. Reproductive Biology and Endocrinology. 2024; 22: 83.
[9] Gómez-Torres M, Sáez-Espinosa P, Huerta-Retamal N, Robles-Gómez L, Avilés M, Aizpurua J, et al. Influence of in vitro capacitation time on structural and functional human sperm parameters. Asian Journal of Andrology. 2020; 22: 447–453.
[10] Sáez-Espinosa P, Ferrández-Rives M, Huerta-Retamal N, Robles-Gómez L, Aizpurua J, Romero A, et al. Proper cytoskeleton α-tubulin distribution is concomitant to tyrosine phosphorylation during in vitro capacitation and acrosomal reaction in human spermatozoa. Cytoskeleton. 2020; 77: 333–341.
[11] Nassar A, Mahony M, Morshedi M, Lin MH, Srisombut C, Oehninger S. Modulation of sperm tail protein tyrosine phosphorylation by pentoxifylline and its correlation with hyperactivated motility. Fertility and Sterility. 1999; 71: 919–923.
[12] Agnihotri SK, Agrawal AK, Hakim BA, Vishwakarma AL, Narender T, Sachan R, et al. Mitochondrial membrane potential (MMP) regulates sperm motility. In Vitro Cellular & Developmental Biology—Animal. 2016; 52: 953–960.
[13] Mai Z, Yang D, Wang D, Zhang J, Zhou Q, Han B, et al. A narrative review of mitochondrial dysfunction and male infertility. Translational Andrology and Urology. 2024; 13: 2134–2145.
[14] Carrageta DF, Freire-Brito L, Oliveira PF, Alves MG. Evaluation of human spermatozoa mitochondrial membrane potential using the JC-1 dye. Current Protocols. 2022; 2: e531.
[15] Vertika S, Singh KK, Rajender S. Mitochondria, spermatogenesis, and male infertility—an update. Mitochondrion. 2020; 54: 26–40.
[16] Wang X, Sharma RK, Gupta A, George V, Thomas AJ, Falcone T, et al. Alterations in mitochondria membrane potential and oxidative stress in infertile men: a prospective observational study. Fertility and Sterility. 2003; 80: 844–850.
[17] Marchetti C, Obert G, Deffosez A, Formstecher P, Marchetti P. Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Human Reproduction. 2002; 17: 1257–1265.
[18] Marchetti C, Jouy N, Leroy-Martin B, Defossez A, Formstecher P, Marchetti P. Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Human Reproduction. 2004; 19: 2267–2276.
[19] Troiano L, Granata ARM, Cossarizza A, Kalashnikova G, Bianchi R, Pini G, et al. Mitochondrial membrane potential and DNA stainability in human sperm cells: a flow cytometry analysis with implications for male infertility. Experimental Cell Research. 1998; 241: 384–393.
[20] Kasai T, Ogawa K, Mizuno K, Nagai S, Uchida Y, Ohta S, et al. Relationship between sperm mitochondrial membrane potential, sperm motility, and fertility potential. Asian Journal of Andrology. 2002; 4: 97–103.
[21] Gallon F, Marchetti C, Jouy N, Marchetti P. The functionality of mitochondria differentiates human spermatozoa with high and low fertilizing capability. Fertility and Sterility. 2006; 86: 1526–1530.
[22] Espinoza JA, Schulz MA, Sánchez R, Villegas JV. Integrity of mitochondrial membrane potential reflects human sperm quality. Andrologia. 2009; 41: 51–54.
[23] Kaya C, Aykaç A, Kaya Y, Taş M. The effect of modifiable lifestyle factors on semen quality. Revista Internacional de Andrología. 2020; 18: 151–158.
[24] Komiya A, Kato M, Shibata H, Imamura Y, Sazuka T, Sakamoto S, et al. Results of lifestyle modification promotion and reproductive/general health check for male partners of couples seeking conception. Heliyon. 2023; 9: e15203.
[25] Al-Gubory KH. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. Reproductive Biomedicine Online. 2014; 29: 17–31.
[26] López-Botella A, Velasco I, Acién M, Sáez-Espinosa P, Todolí-Torró JL, Sánchez-Romero R, et al. Impact of heavy metals on human male fertility—an overview. Antioxidants. 2021; 10: 1473.
[27] Takalani NB, Monageng EM, Mohlala K, Monsees TK, Henkel R, Opuwari CS. Role of oxidative stress in male infertility. Reproduction & Fertility. 2023; 4: e230024.
[28] World Health Organization. WHO laboratory manual for the examination and processing of human semen. 6th edn. World Health Organization: Geneva, Switzerland. 2021.
[29] Alamo A, De Luca C, Mongioì LM, Barbagallo F, Cannarella R, La Vignera S, et al. Mitochondrial membrane potential predicts 4-hour sperm motility. Biomedicines. 2020; 8: 196.
[30] Paoli D, Gallo M, Rizzo F, Baldi E, Francavilla S, Lenzi A, et al. Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertility and Sterility. 2011; 95: 2315–2319.
[31] Gómez-Torres MJ, Hernández-Falcó M, López-Botella A, Huerta-Retamal N, Sáez-Espinosa P. IZUMO1 receptor localization during hyaluronic acid selection in human spermatozoa. Biomedicines. 2023; 11: 2872.
[32] Sáez-Espinosa P, Torrijo-Boix S, Huerta-Retamal N, Avilés M, Aizpurua J, Romero A, et al. Capacitation and acrosome reaction are associated with changes in sialic acid location and head morphometry in human sperm. Revista Internacional de Andrología. 2018; 16: 20–27. (In Spanish)
[33] Gómez-Torres MJ, Sáez-Espinosa P, Manzano-Santiago P, Robles-Gómez L, Huerta-Retamal N, Aizpurua J. Sperm adhesion molecule 1 (SPAM1) distribution in selected human sperm by hyaluronic acid test. Biomedicines. 2022; 10: 2553.
[34] Robert KA, Sharma R, Henkel R, Agarwal A. An update on the techniques used to measure oxidative stress in seminal plasma. Andrologia. 2021; 53: e13726.
[35] López-Botella A, Sánchez R, Paul R, Aizpurua J, Gómez-Torres MJ, Todolí-Torró JL. Analytical determination of heavy metals in human seminal plasma—a systematic review. Life. 2023; 13: 925.
[36] Seo YS, Park JM, Kim JH, Lee MY. Cigarette smoke-induced reactive oxygen species formation: a concise review. Antioxidants. 2023; 12: 1732.
[37] Minzangi K, Kadima JN, Kaaya AN, Matthäus B, Damme PV, Samvura B, et al. Fatty acids and tocopherols content in fractionated oils from five wild oilseed plants native to Kahuzi-Biega National Park, Kivu-DR Congo. European Journal of Medicinal Plants. 2015; 10: 1–9.
[38] Suzuki N, Sawada K, Takahashi I, Matsuda M, Fukui S, Tokuyasu H, et al. Association between polyunsaturated fatty acid and reactive oxygen species production of neutrophils in the general population. Nutrients. 2020; 12: 3222.
[39] Rong CH, Li J, Shi HY, Cai J, Zhou LM. Correlation of sperm mitochondrial membrane potential with semen parameters and outcomes of in vitro fertilization. National Journal of Andrology. 2022; 28: 612–617. (In Chinese)
[40] Condorelli RA, Calogero AE, Russo GI, La Vignera S. From spermiogram to bio-functional sperm parameters: when and why request them? Journal of Clinical Medicine. 2020; 9: 406.
[41] de Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Human Reproduction. 1995; 10: 15–21.
[42] O’Flaherty C. Redox regulation of mammalian sperm capacitation. Asian Journal of Andrology. 2015; 17: 583–590.
Science Citation Index Expanded (SCIE)
Índice Bibliográfico Español en Ciencias de la Salud (IBECS)
Scopus: CiteScore 1.7 (2024)
Top