Title
Author
DOI
Article Type
Special Issue
Volume
Issue
Fibroblast distribution and localization in male reproductive organs: a mouse model study via lineage tracing
Distribución y localización de fibroblastos en los órganos reproductores masculinos: un estudio en modelo murino mediante trazado de linaje
1Division of Urology, University of Texas McGovern Medical School, Houston, TX 77030, USA
2Division of Urology, Department of Surgery, Linkou Chang Lung Memorial Hospital, 333 Taoyuan, Taiwan
3Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008 Nanjing, Jiangsu, China
4Department of Surgery, University of Texas McGovern Medical School, Houston, TX 77030, USA
5Department of Urology, Affiliated Zhongda Hospital of Southeast University, 210009 Nanjing, Jiangsu, China
6Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
DOI: 10.22514/j.androl.2025.028 Vol.23,Issue 3,September 2025 pp.34-44
Submitted: 30 May 2025 Accepted: 06 August 2025
Published: 30 September 2025
*Corresponding Author(s): Tung Shu E-mail: tung.shu@uth.tmc.edu
*Corresponding Author(s): Yanna Cao E-mail: yanna.cao@uth.tmc.edu
† These authors contributed equally.
Background: Fibroblasts are vital for tissue structure, repair, and fibrosis in male reproductive organs, but tools for investigating their localization and distribution are limited. This study employed the collagen type I alpha 2 Cre recombinase estrogen receptor tandem dimer Tomato (Col1a2CreERtdT omato (T om)) lineage tracing mouse model, enabling tamoxifen-inducible, fibroblast-specific labeling through Cre recom-bination under the Col1a2 promoter. This system labels collagen-producing fibroblasts with tdTomato, enabling lineage tracing and visualization of their organization in the penis, prostate, and testis. The study aimed to investigate fibroblast distribution and localization in these organs using this model. Methods: Male Col1a2CreERT om mice (n = 5–6) received tamoxifen (1 mg/day/mouse, intraperitoneal, for 5 consecutive days) to induce Cre recombination and label collagen-producing fibroblasts with tdTomato. Wild type (WT) control mice (n = 3) also received tamoxifen. Two days after the last injection, penis, prostate, and testis tissues were harvested, sectioned, and examined through microscopy on tdTomato epifluorescence. Fibroblasts were quantified as the percentage of tdTomato+ cells relative to total cells. Results: Quantification revealed distinct fibroblast distribution patterns among the organs. In the Col1a2CreERT om mouse, tdTomato+ fibroblasts were most abundant in the penis (75.24 ± 1.6%), followed by the prostate (26.02 ± 1.4%) and testis (13.97 ± 0.9%). Within the penis, the subtunical region had the highest density (93.42 ± 0.5%). In the prostate, fibroblasts were mainly within the fibromuscular stroma; in the testis, they were in the tunica albuginea and interstitial compartments. No tdTomato+ cells were observed in WT controls. Conclusions: The number and location of collagen-producing fibroblasts differ among the penis, prostate, and testis, and vary within penile compartments. These findings reflect the organ- and region-specific distribution of Col1a2-lineage fibroblasts, as revealed by tamoxifen-induced tdTomato lineage tracing. This study provides a useful tool for further investigation of fibroblast function in male reproductive health.
Resumen
Antecedentes: Los fibroblastos son esenciales para la estructura tisular, la reparación y la fibrosis en los órganos reproductivos masculinos, pero existen herramientas limitadas para investigar su localización y distribución. Este estudio empleó el modelo de ratón de trazado de linaje colágeno tipo I alfa 2 Cre recombinasa receptor de estrógeno; tandem dimer Tomato (Col1a2CreERtdT omato (T om)), que permite el marcaje específico de fibroblastos inducible por tamoxifeno mediante recombinación Cre bajo el promotor Col1a2. Este sistema marca fibroblastos productores de colágeno con tdTomato, permitiendo el trazado de linaje y la visualización de su organización en pene, próstata y testículo. El objetivo fue investigar la distribución y localización de fibroblastos en estos órganos utilizando este modelo. Métodos: Ratones machos Col1a2CreERT om (n = 5–6) recibieron tamoxifeno (1 mg/día/ratón, intraperitoneal, durante 5 días consecutivos) para inducir la recombinación Cre y marcar fibroblastos productores de colágeno con tdTomato. Los ratones control de tipo silvestre (WT, n = 3) también recibieron tamoxifeno. Dos días después de la última inyección, se recolectaron pene, próstata y testículo, seccionaron y examinaron mediante microscopía de epifluorescencia para tdTomato. Los fibroblastos se cuantificaron como el porcentaje de células tdTomato+ respecto al total de células. Resultados: La cuantificación reveló patrones distintos de distribución fibroblástica entre órganos. En los ratones Col1a2CreERT om, los fibroblastos tdTomato+ fueron más abundantes en el pene (75.24 ± 1.6%), seguidos por la próstata (26.02 ± 1.4%) y el testículo (13.97 ± 0.9%). En el pene, la región subtunical presentó la mayor densidad (93.42 ± 0.5%). En la próstata, los fibroblastos se localizaron principalmente en el estroma fibromuscular; en el testículo, en la túnica albugínea y los compartimentos intersticiales. No se observaron células tdTomato+ en los controles WT. Conclusiones: El número y la localización de fibroblastos productores de colágeno difieren entre pene, próstata y testículo, y varían dentro de los compartimentos penianos. Estos hallazgos reflejan la distribución órgano- y región-específica de los fibroblastos de linaje Col1a2, revelada mediante trazado de linaje inducido por tamoxifeno con tdTomato. Este estudio proporciona una herramienta útil para futuras investigaciones sobre la función de los fibroblastos en la salud reproductiva masculina.
Collagen-expressing fibroblasts; Penis; Prostate; Testis; Lineage tracing
Palabras Clave
Fibroblastos que expresan colágeno; Pene; Próstata; Testículo; Trazado de linaje
Tung Shu,Danqing Ren,Yu-Hsuan Chien,Baibing Yang,Jiajing Li,Chunhui Liu,Tien C. Ko,Yanna Cao,Run Wang. Fibroblast distribution and localization in male reproductive organs: a mouse model study via lineage tracingDistribución y localización de fibroblastos en los órganos reproductores masculinos: un estudio en modelo murino mediante trazado de linaje. Revista Internacional de Andrología. 2025. 23(3);34-44.
[1] Forte E, Ramialison M, Nim HT, Mara M, Li JY, Cohn R, et al. Adult mouse fibroblasts retain organ-specific transcriptomic identity. eLife. 2022; 11: e71008.
[2] Gauthier V, Kyriazi M, Nefla M, Pucino V, Raza K, Buckley CD, et al. Fibroblast heterogeneity: keystone of tissue homeostasis and pathology in inflammation and ageing. Frontiers in Immunology. 2023; 14: 1137659.
[3] Roman J. Fibroblasts—warriors at the intersection of wound healing and disrepair. Biomolecules. 2023; 13: 945.
[4] Guimaraes EL, Dias DO, Hau WF, Julien A, Holl D, Garcia-Collado M, et al. Corpora cavernosa fibroblasts mediate penile erection. Science. 2024; 383: eade8064.
[5] Henry GH, Malewska A, Joseph DB, Malladi VS, Lee J, Torrealba J, et al. A cellular anatomy of the normal adult human prostate and prostatic urethra. Cell Reports. 2018; 25: 3530–3542.e5.
[6] Miki H, Manresa MC. Novel fibroblast phenotypes in homeostasis and chronic inflammation: from functions to potential regulators. The Journal of Physiology. 2023; 601: 2273–2291.
[7] Ilg MM, Bustin SA, Ralph DJ, Cellek S. TGF-β1 induces formation of TSG-6-enriched extracellular vesicles in fibroblasts which can prevent myofibroblast transformation by modulating Erk1/2 phosphorylation. Scientific Reports. 2024; 14: 12389.
[8] Ilg MM, Harding S, Lapthorn AR, Kirvell S, Ralph DJ, Bustin SA, et al. Temporal gene signature of myofibroblast transformation in Peyronie’s disease: first insights into the molecular mechanisms of irreversibility. Journal of Sexual Medicine. 2024; 21: 278–287.
[9] Şahin A, Babayev H, Cirigliano L, Preto M, Falcone M, Altıntas E, et al. Unveiling the molecular hallmarks of peyronie’s disease: a comprehensive narrative review. International Journal of Impotence Research. 2024; 36: 801–808.
[10] Zhao L, Han S, Su H, Li J, Zhi E, Li P, et al. Single-cell transcriptome atlas of the human corpus cavernosum. Nature Communications. 2022; 13: 4302.
[11] Fang D, Tan XH, Song WP, Gu YY, Pan JC, Yang XQ, et al. Single-cell RNA sequencing of human corpus cavernosum reveals cellular heterogeneity landscapes in erectile dysfunction. Frontiers in Endocrinology. 2022; 13: 874915.
[12] Toda N, Ayajiki K, Okamura T. Nitric oxide and penile erectile function. Pharmacology & Therapeutics. 2005; 106: 233–266.
[13] Jin S, Liu Z, Xiang P, Fu M, Zhang G, Li J, et al. Activation of the cGMP/PKG/ERK signaling pathway associated with PDE5Is inhibits fibroblast activation by downregulating autophagy in early progressive benign prostatic hyperplasia. World Journal of Urololgy. 2024; 42: 333.
[14] Pacheco-Torres J, Sharma RK, Mironchik Y, Wildes F, Brennen WN, Artemov D, et al. Prostate fibroblasts and prostate cancer associated fibroblasts exhibit different metabolic, matrix degradation and PD-L1 expression responses to hypoxia. Frontiers in Molecular Biosciences. 2024; 11: 1354076.
[15] Giri D, Ittmann M. Interleukin-8 is a paracrine inducer of fibroblast growth factor 2, a stromal and epithelial growth factor in benign prostatic hyperplasia. The American Journal of Pathology. 2001; 159: 139–147.
[16] Owen JS, Clayton A, Pearson HB. Cancer-associated fibroblast heterogeneity, activation and function: implications for prostate cancer. Biomolecules. 2022; 13: 67.
[17] Ishii K, Matsuoka I, Sasaki T, Ishii K, Matsuoka I, Sasaki T, et al. Loss of fibroblast-dependent androgen receptor activation in prostate cancer cells is involved in the mechanism of acquired resistance to castration. Journal of Clinical Medicine. 2019; 8: 1379.
[18] Albrecht M, Rämsch R, Köhn FM, Schwarzer JU, Mayerhofer A. Isolation and cultivation of human testicular peritubular cells: a new model for the investigation of fibrotic processes in the human testis and male infertility. The Journal of Clinical Endocrinology and Metabolism. 2006; 91: 1956–1960.
[19] Atiakshin D, Kulchenko N, Kostin A, Ignatyuk M, Protasov A, Klabukov I, et al. Cyto- and histopographic assessment of CPA3-positive testicular mast cells in obstructive and non-obstructive azoospermia. Cells. 2024; 13: 833.
[20] Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017; 356: 1026–1030.
[21] Qin A, Shi K, Tindall RR, Li J, Cheng B, Li J, et al. Characterization of pancreatic collagen-expressing fibroblasts in mouse acute pancreatitis. Gastro Hep Advances. 2025; 4: 100557.
[22] Zheng B, Zhang Z, Black CM, de Crombrugghe B, Denton CP. Ligand-dependent genetic recombination in fibroblasts: a potentially powerful technique for investigating gene function in fibrosis. The American Journal of Pathology. 2002; 160: 1609–1617.
[23] Kusser KL, Randall TD. Simultaneous detection of EGFP and cell surface markers by fluorescence microscopy in lymphoid tissues. The Journal of Histochemistry and Cytochemistry. 2003; 51: 5–14.
[24] Gao X, Cao Y, Yang W, Duan C, Aronson JF, Rastellini C, et al. BMP2 inhibits TGF-β-induced pancreatic stellate cell activation and extracellular matrix formation. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2013; 304: G804–813.
[25] Garcia PE, Scales MK, Allen BL, di Magliano MP. Pancreatic fibroblast heterogeneity: from development to cancer. Cells. 2020; 9: 2464.
[26] Middendorff R, Müller D, Mewe M, Mukhopadhyay AK, Holstein AF, Davidoff MS. The tunica albuginea of the human testis is characterized by complex contraction and relaxation activities regulated by cyclic GMP. The Journal of Clinical Endocrinology and Metabolism. 2002; 87: 3486–3499.
[27] Aguado-Alvaro LP, Garitano N, Abizanda G, Larequi E, Prosper F, Pelacho B. Comparative evaluation of inducible Cre mouse models for fibroblast targeting in the healthy and infarcted myocardium. Biomedicines. 2022; 10: 2350.
[28] Ramirez F, Tanaka S, Bou-Gharios G. Transcriptional regulation of the human α2(I) collagen gene (COL1A2), an informative model system to study fibrotic diseases. Matrix Biology. 2006; 25: 365–372.
[29] Gundogdu G, Nguyen T, Namasivayam A, Starek S, Gelman J, Mauney JR. Characterization of a novel rabbit model of Peyronie’s disease. International Journal of Impotence Research. 2024; 36: 269–274.
[30] Mitsui Y, Yamabe F, Hori S, Uetani M, Kobayashi H, Nagao K, et al. Molecular mechanisms and risk factors related to the pathogenesis of Peyronie’s disease. International Journal of Molecular Sciences. 2023; 24: 10133
[31] Liu Q, Song Y, Cui Y, Hu C, Luo Y, Hu D, et al. Heterogeneity of fibroblasts is a hallmark of age-associated erectile dysfunction. The International Journal of Biochemistry & Cell Biology. 2023; 156: 106343.
[32] Luo C, Peng Y, Gu J, Li T, Wang Q, Qi X, et al. Single-cell RNA sequencing reveals critical modulators of extracellular matrix of penile cavernous cells in erectile dysfunction. Scientific Reports. 2024; 14: 5886.
[33] Kwon OJ, Zhang Y, Li Y, Wei X, Zhang L, Chen R, et al. Functional heterogeneity of mouse prostate stromal cells revealed by single-cell RNA-seq. iScience. 2019; 13: 328–338.
[34] Joseph DB, Henry GH, Malewska A, Reese JC, Mauck RJ, Gahan JC, et al. Single‐cell analysis of mouse and human prostate reveals novel fibroblasts with specialized distribution and microenvironment interactions. The Journal of Pathology. 2021; 255: 141–154.
[35] Peng YC, Levine CM, Zahid S, Wilson EL, Joyner AL. Sonic hedgehog signals to multiple prostate stromal stem cells that replenish distinct stromal subtypes during regeneration. Proceedings of the National Academy of Sciences of the United States of America. 2013; 110: 20611–20616.
[36] Josson S, Matsuoka Y, Chung LWK, Zhau HE, Wang R. Tumor stroma co-evolution in prostate cancer progression and metastasis. Seminars in Cell & Developmental Biology. 2010; 21: 26–32.
[37] Park H, Park S, Kim KH, Cho MS, Sung SH, Ro JY. Stromal nodules in benign prostatic hyperplasia: morphologic and immunohistochemical characteristics: stromal nodules of prostate. The Prostate. 2014; 74: 1433–1443.
[38] Zhou R, Wu J, Liu B, Jiang Y, Chen W, Li J, et al. The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cellular and Molecular Life Sciences. 2019; 76: 2681–2695.
[39] Zhang G, Sun Y, Guan M, Liu M, Sun S. Single-cell and spatial transcriptomic investigation reveals the spatiotemporal specificity of the beta-defensin gene family during mouse sperm maturation. Cell Communication and Signaling. 2024; 22: 267.
[40] Rhee H, Gunter JH, Heathcote P, Ho K, Stricker P, Corcoran NM, et al. Adverse effects of androgen‐deprivation therapy in prostate cancer and their management. BJU International. 2015; 115: 3–13.
[41] Dohle GR, Smit M, Weber RFA. Androgens and male fertility. World Journal of Urology. 2003; 21: 341–345.
[42] Cioni B, Nevedomskaya E, Melis MHM, van Burgsteden J, Stelloo S, Hodel E, et al. Loss of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Molecular Oncology. 2018; 12: 1308–1323.
[43] Holterhus PM, Hiort O, Demeter J, Brown PO, Brooks JD. Differential gene-expression patterns in genital fibroblasts of normal males and 46,XY females with androgen insensitivity syndrome: evidence for early programming involving the androgen receptor. Genome Biology. 2003; 4: R37.
Science Citation Index Expanded (SCIE)
Índice Bibliográfico Español en Ciencias de la Salud (IBECS)
Scopus: CiteScore 1.7 (2024)
Top