Article Data

  • Views 281
  • Dowloads 36

Original Research

Open Access

A global screen for testicular proteins and RNAs interacting with STRBP

Búsqueda global de proteínas y ARN testiculares que interactúan con STRBP

  • Jingyan Yu1,†
  • Minyan Yu2,†
  • Yufei Chen1
  • Chaoye Ma1
  • Xiaoning Zhang1,*,
  • Yuan Gao3,*,
  • Pengyuan Dai1,*,

1Institute of Reproductive Medicine, Medical School, Nantong University, 226019 Nantong, Jiangsu, China

2Center of Reproductive Medicine, The Affiliated Hospital of Nantong University, Nantong University, 226019 Nantong, Jiangsu, China

3Experimental Animal Center, Nantong University, 226001 Nantong, Jiangsu, China

DOI: 10.22514/j.androl.2025.035 Vol.23,Issue 3,September 2025 pp.97-107

Submitted: 28 August 2024 Accepted: 06 November 2024

Published: 30 September 2025

*Corresponding Author(s): Xiaoning Zhang E-mail: zhangxn@ntu.edu.cn
*Corresponding Author(s): Yuan Gao E-mail: dayuanzi@ntu.edu.cn
*Corresponding Author(s): Pengyuan Dai E-mail: pengyuandai@ntu.edu.cn

† These authors contributed equally.

Abstract

Background: Spermatid perinuclear RNA-binding protein (STRBP) facilitates RNAs transportation and translational activation during spermatid development. STRBP deficiency impairs male fertility and causes premature death of mouse offspring. However, the mechanisms underlying the regulation of spermiogenesis remain elusive. Methods: RNA immunoprecipitation sequencing and immunoprecipitation, followed by liquid chromatography-mass spectrometry, were used to explore how RNAs and proteins interact with STRBP. Results: These results suggest that STRBP is involved in spermiogenesis, mainly through precursor messenger RNA (mRNA) maturation by the spliceosome, RNAs transportation, translation-activating or translation-inactivating processes, and interaction with long noncoding RNAs. The transport action exerted by STRBP involves interactions with RNAs and proteins, including centromere protein E (Cenpe), dynein axonemal intermediate chain 3 (Dnai3), kinesin family member 23 (Kif23), kinesin family member 20b (Kif20b), dynein axonemal intermediate chain 1 (Dnai1), tubulin tyrosine ligase like 3 (Ttll3), DExH-Box helicase 9 (DHX9) and heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1). Transformer 2 beta homolog (TRA2B), HNRNPA2B1, serine and arginine rich splicing factor 2 (SRSF2), apoptotic chromatin condensation inducer 1 (ACIN1), sin3A associated protein 18 (SAP18), la ribonucleoprotein 7 (Larp7) and transcription elongation regulator 1 (Tcerg1), may mediate nuclear precursor mRNA maturation. Poly(RC) binding protein 2 (PCBP2), DHX9, synaptotagmin binding cytoplasmic RNA interacting protein (SYNCRIP), heterogeneous nuclear ribonucleoprotein D (HNRNPD) and N-acetyltransferase 10 (NAT10) are involved in the translation process, whereas UPF1 RNA helicase and ATPase (UPF1) and ribosomal protein L13a (RPL13A) probably impose a delayed action on mRNA translation. Conclusions: Our study not only provides preliminary evidence on STRBP-regulated processes involved in sperm physiology but also indicates potential candidates for investigating their roles in spermatogenesis.


Resumen

Antecedentes: La proteína de unión al ARN perinuclear de los espermatozoides (STRBP) facilita el transporte de ARN y la activación traslacional durante el desarrollo de los espermatozoides. La deficiencia de STRBP afecta a la fertilidad masculina y causa la muerte prematura de las crías de ratón. Sin embargo, los mecanismos subyacentes a la regulación de la espermiogénesis siguen siendo esquivos. Métodos: En este trabajo se utilizó la secuenciación por inmunoprecipitación de ARN y la inmunoprecipitación, seguidas de cromatografía líquida-espectrometría de masas, para explorar cómo interactúan los ARN y las proteínas con la STRBP. Resultados: Estos resultados sugieren que la STRBP interviene en la espermiogénesis, principalmente a través de la maduración del ARNm precursor por el espliceosoma, el transporte de ARNs, los procesos de activación o desactivación de la traducción y la interacción con ARN no codificantes largos. La acción de transporte ejercida por la STRBP implica interacciones con ARN y proteínas, entre ellas la proteína E del centrómero (Cenpe), la cadena intermedia axonemal 3 de la dineína (Dnai3), el miembro 23 de la familia de la kinesina (Kif23), el miembro 20b de la familia de la kinesina (Kif20b), la cadena intermedia axonemal 1 de la dineína (Dnai1), la tubulina tirosina ligasa como 3 (Ttll3), la helicasa 9 DExH-Box (DHX9) y la ribonucleoproteína nuclear heterogénea A2/B1 (HNRNPA2B1). El homólogo beta del transformador 2 (TRA2B), la HNRNPA2B1, el factor de empalme 2 rico en serina y arginina (SRSF2), el inductor 1 de la condensación apoptótica de la cromatina (ACIN1), la proteína 18 asociada a sin3A (SAP18), la ribonucleoproteína 7 (Larp7) y el regulador 1 de la elongación de la transcripción (Tcerg1), pueden mediar en la maduración del ARNm precursor nuclear. La proteína de unión a poli(RC) 2 (PCBP2), DHX9, la proteína de interacción con el ARN citoplasmático de unión a sinaptotagmina (SYNCRIP), la ribonucleoproteína nuclear heterogénea D (HNRNPD) y la N-acetiltransferasa 10 (NAT10) participan en el proceso de traducción, mientras que la ARN helicasa y ATPasa UPF1 (UPF1) y la proteína ribosómica L13a RPL13A probablemente imponen una acción retardada en la traducción del ARNm. Conclusiones: En conclusión, nuestro estudio no sólo aporta pruebas preliminares sobre los procesos regulados por STRBP implicados en la fisiología espermática, sino que también indica posibles candidatos para investigar sus funciones en la espermatogénesis.


Keywords

STRBP; Spermiogenesis; RNA transportation; Cytoplasmic translation; lncRNAs; Spermatogenesis


Palabras Clave

STRBP; Espermiogénesis; Transporte de ARN; Traducción citoplasmática; lncARNs; Espermatogénesis


Cite and Share

Jingyan Yu,Minyan Yu,Yufei Chen,Chaoye Ma,Xiaoning Zhang,Yuan Gao,Pengyuan Dai. A global screen for testicular proteins and RNAs interacting with STRBPBúsqueda global de proteínas y ARN testiculares que interactúan con STRBP. Revista Internacional de Andrología. 2025. 23(3);97-107.

References

[1] Kelaini S, Chan C, Cornelius VA, Margariti A. RNA-binding proteins hold key roles in function, dysfunction, and disease. Biology. 2021; 10: 366.

[2] Idler RK, Yan W. Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis. Journal of Andrology. 2012; 33: 309–337.

[3] Miyata H, Shimada K, Kaneda Y, Ikawa M. Development of functional spermatozoa in mammalian spermiogenesis. Development. 2024; 151: dev202838.

[4] Schumacher JM, Lee K, Edelhoff S, Braun RE. Spnr, a murine RNA-binding protein that is localized to cytoplasmic microtubules. The Journal of Cell Biology. 1995; 129: 1023–1032.

[5] Pires-daSilva A, Nayernia K, Engel W, Torres M, Stoykova A, Chowdhury K, et al. Mice deficient for spermatid perinuclear RNA-binding protein show neurologic, spermatogenic, and sperm morphological abnormalities. Developmental Biology. 2001; 233: 319–328.

[6] Lehti MS, Sironen A. Formation and function of the manchette and flagellum during spermatogenesis. Reproduction. 2016; 151: R43–R54.

[7] Schumacher JM, Artzt K, Braun RE. Spermatid perinuclear ribonucleic acid-binding protein binds microtubules in vitro and associates with abnormal manchettes in vivo in mice. Biology of Reproduction.1998; 59: 69–76.

[8] Coolidge CJ. A new double-stranded RNA-binding protein that interacts with PKR. Nucleic Acids Research. 2000; 28: 1407–1417.

[9] Elías-Villalobos A, Duncan C, Mata J, Helmlinger D. Quantitative analysis of protein-RNA interactions in fission yeast. STAR Protocols. 2022; 3: 101373.

[10] Oberc C, Li PCH. Next-generation DNA sequencing of Panax samples revealed new genotypes: burrows-wheeler aligner, python-based abundance and clustering analysis. Heliyon. 2024; 10: e29104.

[11] Hentges LD, Sergeant MJ, Cole CB, Downes DJ, Hughes JR, Taylor S. LanceOtron: a deep learning peak caller for genome sequencing experiments. Bioinformatics. 2022; 38: 4255–4263.

[12] Nystrom SL, McKay DJ. Memes: A motif analysis environment in R using tools from the MEME Suite. PLOS Computational Biology. 2021; 17: e1008991.

[13] Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. Quantifying similarity between motifs. Genome biology. 2007; 8: R24.

[14] Ye M, Xie L, Zhang J, Liu B, Liu X, He J, et al. Determination of long non-coding RNAs associated with EZH2 in neuroblastoma by RIP-seq, RNA-seq and ChIP-seq. Oncology Letters. 2020; 20: 1.

[15] Liu Y, Shen X, Gong Y, Liu Y, Song B, Zeng X. Sequence alignment/map format: a comprehensive review of approaches and applications. Briefings in Bioinformatics. 2023; 24: bbad320.

[16] Jiang G, Zheng JY, Ren SN, Yin W, Xia X, Li Y, et al. A comprehensive workflow for optimizing RNA-seq data analysis. BMC Genomics. 2024; 25: 631.

[17] Zheng Y, Luo H, Teng X, Hao X, Yan X, Tang Y, et al. NPInter v5.0: ncRNA interaction database in a new era. Nucleic Acids Research. 2023; 51: D232–D239.

[18] Wang S, You R, Liu Y, Xiong Y, Zhu S. NetGO 3.0: protein language model improves large-scale functional annotations. Genomics, Proteomics & Bioinformatics. 2023; 21: 349–358.

[19] Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research. 2023; 51: D587–D592.

[20] Jansen RP. RNA-cytoskeletal associations. The FASEB Journal. 1999; 13: 455–466.

[21] Gadadhar S, Viar GA, Hansen JN, Gong A, Kostarev A, Ialy-Radio C, et al. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science. 2021; 371: eabd4914.

[22] Wu H, Liu Y, Li Y, Li K, Xu C, Gao Y, et al. DNALI1 deficiency causes male infertility with severe asthenozoospermia in humans and mice by disrupting the assembly of the flagellar inner dynein arms and fibrous sheath. Cell Death & Disease. 2023; 14: 127.

[23] Man YH, Warmbrunn I, Zhang L, Zhang ZB. The roles of intraflagellar transport (IFT) protein 25 in mammalian signaling transduction and flagellogenesis. Asian Journal of Andrology. 2022; 24: 238–242.

[24] Sha Y, Sha Y, Liu W, Zhu X, Weng M, Zhang X, et al. Biallelic mutations of CFAP58 are associated with multiple morphological abnormalities of the sperm flagella. Clinical Genetics. 2021; 99: 443–448.

[25] Wolozin B, Ivanov P. Stress granules and neurodegeneration. Nature Reviews Neuroscience. 2019; 20: 649–666.

[26] Matos B, Publicover SJ, Castro LFC, Esteves PJ, Fardilha M. Brain and testis: more alike than previously thought? Open Biology. 2021; 11: 200322.

[27] Black CS, Whelan TA, Garside EL, MacMillan AM, Fast NM, Rader SD. Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. RNA. 2023; 29: 531–550.

[28] Grellscheid S, Dalgliesh C, Storbeck M, Best A, Liu Y, Jakubik M, et al. Identification of evolutionarily conserved exons as regulated targets for the splicing activator tra2β in development. PLOS genetics. 2011; 7: e1002390.

[29] Peng WZ, Zhao J, Liu X, Li CF, Si S, Ma R. hnRNPA2B1 regulates the alternative splicing of BIRC5 to promote gastric cancer progression. Cancer Cell International. 2021; 21: 281.

[30] Lei WL, Du Z, Meng TG, Su R, Li YY, Liu W, et al. SRSF2 is required for mRNA splicing during spermatogenesis. BMC Biology. 2023; 21: 231.

[31] Charlab R, Racz R. The expanding universe of fusions in pediatric cancer. Clinical and Translational Science. 2023; 16: 1331–1339.

[32] Murachelli AG, Ebert J, Basquin C, Le Hir H, Conti E. The structure of the ASAP core complex reveals the existence of a Pinin-containing PSAP complex. Nature Structural & Molecular Biology. 2012; 19: 378–386.

[33] Sinha N, Whelan EC, Tobias JW, Avarbock M, Stefanovski D, Brinster RL. Roles of Stra8 and Tcerg1l in retinoic acid induced spermatogonial differentiation in mouse. Biology of Reproduction. 2021; 105: 503–518.

[34] Wang X, Li ZT, Yan Y, Lin PH, Tang W, Hasler D, et al. LARP7-Mediated U6 snRNA modification ensures splicing fidelity and spermatogenesis in mice. Molecular Cell. 2020; 77: 999–1013.e6.

[35] De Magistris P. The great escape: mRNA export through the nuclear pore complex. International Journal of Molecular Sciences. 2021; 22: 11767.

[36] Dickins RA, Frew IJ, House CM, O’Bryan MK, Holloway AJ, Haviv I, et al. The ubiquitin ligase component Siah1a is required for completion of meiosis I in male mice. Molecular and Cellular Biology. 2002; 22: 2294–2303.

[37] Xu W, Zhang Y, Qin D, Gui Y, Wang S, Du G, et al. Transcription factor-like 5 is a potential DNA-and RNA-binding protein essential for maintaining male fertility in mice. Journal of Cell Science. 2022; 135: jcs259036.

[38] Lee T, Pelletier J. The biology of DHX9 and its potential as a therapeutic target. Oncotarget. 2016; 7: 42716–42739.

[39] Wang XL, Li JM, Yuan SQ. Characterization of the protein expression and localization of hnRNP family members during murine spermatogenesis. Asian Journal of Andrology. 2023; 25: 314–321.

[40] Chi W, Liu W, Fu W, Xia S, Heckscher ES, Zhuang X. RNA-binding protein syncrip regulates starvation-induced hyperactivity in adult drosophila. PLOS Genetics. 2021; 17: e1009396.

[41] Cao Y, Xu J, Liu J, Liang Y, Ao F, Wang S, et al. Bisphenol A exposure decreases sperm production and male fertility through inhibition PCBP2 expression. Environmental Science and Pollution Research. 2023; 30: 123309–123323.

[42] Ge JB, Wang ZX, Wu J. NAT10-mediated acC modification promotes ectoderm differentiation of human embryonic stem cells via acetylating mRNA. Cell Proliferat. 2024; 57: e13577.

[43] Fanourgakis G, Lesche M, Akpinar M, Dahl A, Jessberger R. Chromatoid body protein TDRD6 supports long 3′UTR triggered nonsense mediated mRNA decay. PLOS genetics. 2016; 12: e1005857.

[44] Guo R, Wu H, Zhu X, Wang G, Hu K, Li K, et al. Bi-allelic variants in chromatoid body protein TDRD6 cause spermiogenesis defects and severe oligoasthenoteratozoospermia in humans. Journal of Medical Genetics. 2024; 61: 553–565.

[45] Staszewski J, Lazarewicz N, Konczak J, Migdal I, Maciaszczyk-Dziubinska E. UPF1—from mRNA degradation to human disorders. Cells. 2023; 12: 419.

[46] Amorim IS, Kedia S, Kouloulia S, Simbriger K, Gantois I, Jafarnejad SM, et al. Loss of eIF4E phosphorylation engenders depression-like behaviors via selective mRNA translation. Journal of Neuroscience. 2018; 38: 2118–2133.

[47] Rofeal M, Abd El-Malek F. Ribosomal proteins as a possible tool for blocking SARS-COV 2 virus replication for a potential prospective treatment. Medical Hypotheses. 2020; 143: 109904.

[48] Janisch KM, Vock VM, Fleming MS, Shrestha A, Grimsley-Myers CM, Rasoul BA, et al. The vertebrate-specific Kinesin-6, Kif20b, is required for normal cytokinesis of polarized cortical stem cells and cerebral cortex size. Development. 2013; 140: 4672–4682.

[49] Bannai H, Fukatsu K, Mizutani A, Natsume T, Iemura S, Ikegami T, et al. An RNA-interacting protein, SYNCRIP (heterogeneous nuclear ribonuclear protein Q1/NSAP1) is a component of mRNA granule transported with inositol 1,4,5-trisphosphate receptor type 1 mRNA in neuronal dendrites. Journal of Biological Chemistry. 2004; 279: 53427–53434.

[50] Bao J, Vitting-Seerup K, Waage J, Tang C, Ge Y, Porse BT, et al. UPF2-dependent nonsense-mediated mRNA decay pathway is essential for spermatogenesis by selectively eliminating longer 3′UTR transcripts. PLOS genetics. 2016; 12: e1005863.

[51] Isken O, Kim YK, Hosoda N, Mayeur GL, Hershey JWB, Maquat LE. Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell. 2008; 133: 314–327.


Top