Article Data

  • Views 226
  • Dowloads 36

Original Research

Open Access Special Issue

Effect of high soda beverage consumption on the fertility of naive male mice

Efecto del alto consumo de bebidas gaseosas sobre la fertilidad de ratones machos naive

  • Ayman S. Alhazmi1,*,

1Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, 24227 Taif, Saudi Arabia

DOI: 10.22514/j.androl.2025.045 Vol.23,Issue 4,December 2025 pp.55-64

Submitted: 26 April 2025 Accepted: 08 July 2025

Published: 30 December 2025

(This article belongs to the Special Issue Medicine Use and Sexual Function)

Abstract

Background: The consumption of soda drinks has risen in recent years. Excessive intake of soda beverages has been linked to numerous detrimental effects. This study sought to examine the impact of soda consumption on the fertility of male mice. Methods: Twenty male mice were allocated to a control group and a soda group. After four months, blood samples from mice were used to estimate male sex hormones, prolactin, adropin, endothelin-1, and nitric oxide (NO). Additionally, the testis was obtained for semen analysis and assessment of testicular lipid peroxidation (LPO), reduced glutathione (GSH), catalase, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) levels. Furthermore, testicular tissue NO synthase immunohistochemistry was estimated for the mice in the two groups, while the semen was obtained from caudae epididymides. Results: Soda drinking significantly raised body weight and lowered the testicular weight/body weight ratio. Compared with the control group, the soda group had increased endothelin-1 and NO and decreased testosterone and adropin levels. Soda consumption lowered testicular catalase, GSH-Px, and SOD and elevated LPO. Regarding semen analysis, soda significantly decreases sperm count and motility, whereas it increases abnormal sperm morphology. Soda drinking significantly increased testicular nitric oxide synthase (NOS) immunohistochemistry compared with the control group. Conclusions: The study concludes that the high consumption of soda beverages reduces the fertility of male mice via the induction of oxidative stress. This stress diminishes sperm counts and motility while augmenting the prevalence of defective sperm. In addition, soda drinking decreases testosterone and adropin levels.


Resumen

Antecedentes: El consumo de bebidas gaseosas ha aumentado en los últimos años. La ingesta excesiva de bebidas gaseosas se ha relacionado con numerosos efectos perjudiciales. Este estudio buscó examinar el impacto del consumo de refrescos en la fertilidad de ratones macho. Métodos: Se dividieron veinte ratones macho en un grupo de control y un grupo de refrescos. Después de cuatro meses, se utilizaron muestras de sangre de ratones para estimar las hormonas sexuales masculinas, prolactina, adropina, endotelina-1 y óxido nítrico (NO). Además, se obtuvieron los testículos para el análisis de semen y la evaluación de los niveles de peroxidación lipídica testicular (LPO), glutatión reducido (GSH), catalasa, glutatión peroxidasa (GSH-Px) y superóxido dismutasa (SOD). Además, se estimó la inmunohistoquímica de la NO sintasa del tejido testicular para los ratones de los dos grupos, mientras que el semen se obtuvo de los epidídimos de la cola de caballo. Resultados: El consumo de refrescos aumentó significativamente el peso corporal y redujo la relación peso testicular/peso corporal. En comparación con el grupo de control, el grupo de refrescos tuvo un aumento de endotelina-1 y NO y una disminución de los niveles de testosterona y adropina. El consumo de refrescos redujo la catalasa testicular, GSH-Px y SOD y elevó la LPO. En cuanto al análisis de semen, los refrescos disminuyen significativamente el recuento y la motilidad de los espermatozoides, mientras que la morfología anormal de los espermatozoides aumenta. El consumo de refrescos aumentó significativamente la inmunohistoquímica testicular nitric oxide synthase (NOS) en comparación con el grupo de control. Conclusiones: El estudio concluye que el elevado consumo de bebidas gaseosas reduce la fertilidad de ratones macho mediante la inducción de estrés oxidativo. Este estrés disminuye el recuento y la motilidad de los espermatozoides al tiempo que aumenta la prevalencia de espermatozoides defectuosos. Además, el consumo de refrescos disminuye los niveles de testosterona y adropina.


Keywords

Soda beverage; Fertility; Semen analysis; Oxidative stress; Antioxidants


Palabras Clave

Bebida gaseosa; Fertilidad; Análisis de semen; Estrés oxidativo; Antioxidantes


Cite and Share

Ayman S. Alhazmi. Effect of high soda beverage consumption on the fertility of naive male miceEfecto del alto consumo de bebidas gaseosas sobre la fertilidad de ratones machos naive. Revista Internacional de Andrología. 2025. 23(4);55-64.

References

[1] Louis JF, Thoma ME, Sørensen DN, McLain AC, King RB, Sundaram R, et al. The prevalence of couple infertility in the United States from a male perspective: evidence from a nationally representative sample. Andrology. 2013; 1: 741–748.

[2] Leslie SW, Soon-Sutton TL, Khan MAB. Male infertility. StatPearls Publishing: Treasure Island (FL). 2025.

[3] Minguez-Alarcon L, Williams PL, Chiu YH, Gaskins AJ, Nassan FL, Dadd R, et al.; Earth Study Team. Secular trends in semen parameters among men attending a fertility center between 2000 and 2017: identifying potential predictors. Environment International. 2018; 121: 1297–1303.

[4] Schlegel PN, Sigman M, Collura B, De Jonge CJ, Eisenberg ML, Lamb DJ, et al. Diagnosis and treatment of infertility in men: AUA/ASRM guideline part I. Journal of Urology. 2021; 205: 36–43.

[5] Shih KW, Shen PY, Wu CC, Kang YN. Testicular versus percutaneous epididymal sperm aspiration for patients with obstructive azoospermia: a systematic review and meta-analysis. Translational Andrology and Urology. 2019; 8: 631–640.

[6] Górnicka M, Pierzynowska J, Kaniewska E, Kossakowska K, Woźniak A. School pupils and university students surveyed for drinking beverages containing caffeine. Roczniki Państwowego Zakładu Higieny. 2014; 65: 113–117.

[7] Basu S, McKee M, Galea G, Stuckler D. Relationship of soft drink consumption to global overweight, obesity, and diabetes: a cross-national analysis of 75 countries. American Journal of Public Health. 2013; 103: 2071–2077.

[8] Hatch EE, Wesselink AK, Hahn KA, Michiel JJ, Mikkelsen EM, Sorensen HT, et al. Intake of sugar-sweetened beverages and fecundability in a North American preconception cohort. Epidemiology. 2018; 29: 369–378.

[9] Inchingolo AM, Malcangi G, Ferrante L, Del Vecchio G, Viapiano F, Mancini A, et al. Damage from carbonated soft drinks on enamel: a systematic review. Nutrients. 2023; 15: 1785.

[10] Tsimihodimos V, Kakaidi V, Elisaf M. Cola-induced hypokalaemia: pathophysiological mechanisms and clinical implications. International Journal of Clinical Practice. 2009; 63: 900–902.

[11] Packer C. Cola-induced hypokalaemia: a supersized problem. International Journal of Clinical Practice. 2009; 63: 833–835.

[12] Torres-Ibarra L, Rivera-Paredez B, Hernández-López R, Canto-Osorio F, Sánchez-Romero LM, López-Olmedo N, et al. Regular consumption of soft drinks is associated with type 2 diabetes incidence in Mexican adults: findings from a prospective cohort study. Nutrition Journal. 2020; 19: 126.

[13] Heo GY, Koh HB, Park JT, Han SH, Yoo TH, Kang SW, et al. Sweetened beverage intake and incident chronic kidney disease in the UK biobank study. JAMA Network Open. 2024; 7: e2356885.

[14] Matijasevich A, Santos IS, Barros FC. Does caffeine consumption during pregnancy increase the risk of fetal mortality? A literature review. Cadernos de Saúde Pública. 2005; 21: 1676–1684.

[15] Chiu YH, Afeiche MC, Gaskins AJ, Williams PL, Mendiola J, Jorgensen N, et al. Sugar-sweetened beverage intake in relation to semen quality and reproductive hormone levels in young men. Human Reproduction. 2014; 29: 1575–1584.

[16] Yang H, Chen Q, Zhou N, Sun L, Bao H, Tan L, et al. Lifestyles associated with human semen quality: results from MARHCS Cohort Study in Chongqing, China. Medicine. 2015; 94: e1166.

[17] Nya-Ngatchou JJ, Arnold SL, Walsh TJ, Muller CH, Page ST, Isoherranen N, et al. Intratesticular 13-cis retinoic acid is lower in men with abnormal semen analyses, a pilot study. Andrology. 2013; 1: 325–331.

[18] van der Horst G, Skosana B, Legendre A, Oyeyipo P, du Plessis SS. Automated analysis of rat sperm morphometry and morphology: moving towards cut-off values for normal sperm morphology and toxicology. Biotechnic & Histochemistry. 2018; 93: 49–58.

[19] Alizadeh R, Navid S, Abbasi N, Yari A, Mazaheri Z, Daneshi E, et al. The effect of aminoguanidine on sperm motility and mitochondrial membrane potential in varicocelized rats. Iranian Journal of Basic Medical Sciences. 2016; 19: 1279–1284.

[20] Sunder M, Leslie SW. Semen analysis. StatPearls Publishing: Treasure Island (FL). 2025.

[21] Begum N, Anwary SA, Alfazzaman M, Mahzabin Z, Nahar K, Rahman MM, et al. Role of serum follicle stimulating hormone, luteinizing hormone, testosterone and prolactin levels in azoospermic male partner of subfertile couple. Mymensingh Medical Journal. 2016; 25: 303–307.

[22] Boric-Skaro D, Mizdrak M, Luketin M, Martinovic D, Tokic D, Vilovic M, et al. Serum adropin levels in patients on hemodialysis. Life. 2021; 11: 337.

[23] Jensen TK, Swan SH, Skakkebaek NE, Rasmussen S, Jorgensen N. Caffeine intake and semen quality in a population of 2,554 young Danish men. American Journal of Epidemiology. 2010; 171: 883–891.

[24] Nassan FL, Priskorn L, Salas-Huetos A, Halldorsson TI, Jensen TK, Jørgensen N, et al. Association between intake of soft drinks and testicular function in young men. Human Reproduction. 2021; 36: 3036–3048.

[25] Ruff JS, Suchy AK, Hugentobler SA, Sosa MM, Schwartz BL, Morrison LC, et al. Human-relevant levels of added sugar consumption increase female mortality and lower male fitness in mice. Nature Communications. 2013; 4: 2245.

[26] Asadi N, Bahmani M, Kheradmand A, Rafieian-Kopaei M. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. Journal of Clinical and Diagnostic Research. 2017; 11: IE01–IE05.

[27] Walke G, Gaurkar SS, Prasad R, Lohakare T, Wanjari M. The impact of oxidative stress on male reproductive function: exploring the role of antioxidant supplementation. Cureus. 2023; 15: e42583.

[28] Evans EPP, Scholten JTM, Mzyk A, Reyes-San-Martin C, Llumbet AE, Hamoh T, et al. Male subfertility and oxidative stress. Redox Biology. 2021; 46: 102071.

[29] Aitken RJ, Drevet JR. The importance of oxidative stress in determining the functionality of mammalian spermatozoa: a two-edged sword. Atioxidants. 2020; 9: 111.

[30] Fernández-Santos MR, Domínguez-Rebolledo AE, Esteso MC, Garde JJ, Martínez-Pastor F. Catalase supplementation on thawed bull spermatozoa abolishes the detrimental effect of oxidative stress on motility and DNA integrity. International Journal of Andrology. 2009; 32: 353–359.

[31] Zou J, Wei L, Li D, Zhang Y, Wang G, Zhang L, et al. Effect of glutathione on sperm quality in Guanzhong dairy goat sperm during cryopreservation. Frontiers in Veterinary Science. 2021; 8: 771440.

[32] Tripathi S, Maurya S, Singh A. Adropin promotes testicular functions by modulating redox homeostasis in adult mouse. Endocrine. 2024; 86: 428–440.

[33] Tripathi S, Maurya S, Singh A. Adropin may promote insulin stimulated steroidogenesis and spermatogenesis in adult mice testes. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology. 2024; 341: 86–98.

[34] Kamada S, Oehninger S, Mahony MC, Blackmore PF, Lanzendorf SE, Hodgen GD. Does endothelin-1 affect human spermatozoa function? American Journal of Reproductive Immunology. 1994; 31: 91–98.

[35] Gyftopoulos K, Chondrogianni C, Papadaki H. Increased expression of endothelin-1 and its receptors in varicocele: an immunohistochemical study. Fertility and Sterility. 2011; 95: 2554–2556.e1–2.

[36] Park SW, Park HJ, Park NC. The influences vascular endothelial growth factor and endothelin-1 in spermatogenesis in testis. Korean Journal of Fertility and Sterility. 2004; 31: 235–244.

[37] Dutta S, Sengupta P. The role of nitric oxide on male and female reproduction. Malaysian Journal of Medical Sciences. 2022; 29: 18–30.

[38] Luo Y, Zhu Y, Basang W, Wang X, Li C, Zhou X. Roles of nitric oxide in the regulation of reproduction: a review. Frontiers in Endocrinology. 2021; 12: 752410.


Top