Title
Author
DOI
Article Type
Special Issue
Volume
Issue
Methodological aspects of chemically-induced chronic prostatitis/chronic pelvic pain syndrome models: a systematic review
Aspectos metodológicos de los modelos de prostatitis crónica inducida químicamente/síndrome de dolor pélvico crónico: una revisión sistemática
1Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, Belgrade University, 11000 Belgrade, Serbia
2Department of Biotechnology, Institute of Natural and Applied Sciences, Cukurova University, 01330 Adana, Turkey
3Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, Belgrade University, 11000 Belgrade, Serbia
DOI: 10.22514/j.androl.2025.043 Vol.23,Issue 4,December 2025 pp.22-35
Submitted: 20 July 2025 Accepted: 09 October 2025
Published: 30 December 2025
*Corresponding Author(s): Dragan Hrnčić E-mail: dragan.hrncic@med.bg.ac.rs
Background: Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is highly prevalent but poorly understood urological disorder with limited success of available therapies. Chemically induced rodent models of CP/CPPS have become valuable tools for elucidation of its ethiopathogenesis and evaluation of therapies. However, methodological diversity could limit translational relevance. The aim of this systematic review was to assess different methodological aspects of chemically induced CP/CPPS models in rodents. Methods: A systematic search was conducted in PubMed and Scopus (2000 up to 13 June 2025), in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies were included if they involved in vivo models of CP/CPPS induced by chemical agents (e.g., λ-carrageenan, complete Freund’s adjuvant). Key data extracted included species and strain, chemical agent type and dose, control group design, pain and morphological assessments and therapeutic interventions. Results: Fifty-six studies met our inclusion criteria. Rats were more frequently used than mice, with the domination of Sprague-Drawly rats. λ-carrageenan was the most frequently used chemical agent to induce CP/CPPS (in 62.5% of studies). Pain-related behavior assessments were not done in more than a half of included studies (57%), while mechanical hyperalgesia was assessed more frequently than thermal hyperalgesia. Morphological validation was done in 84% of studies, primarily using hematoxylin and eosin staining and semi-quantitative scoring. Therapies tested were diverse, including herbal extracts (39%), but intervention protocols varied widely. Conclusions: Chemically induced CP/CPPS models are valuable for translational research, but significant methodological variability should be ameliorated. Standardized protocols for induction, validation, and treatment assessments are needed to enhance reproducibility and clinical relevance of CP/CPPS models. The PROSPERO Registration: The study was registered at PROSPERO (CRD420251106861).
Resumen
Antecedentes: La prostatitis crónica/síndrome de dolor pélvico crónico (CP/CPPS) es un trastorno urológico de alta prevalencia, pero poco comprendido, con un éxito limitado de las terapias disponibles. Los modelos de CP/CPPS inducidos químicamente en roedores se han convertido en herramientas valiosas para la elucidación de su etiopatogenia y la evaluación de terapias. Sin embargo, la diversidad metodológica podría limitar su relevancia translacional. El objetivo de esta revisión sistemática fue evaluar diferentes aspectos metodológicos de los modelos de CP/CPPS inducidos químicamente en roedores. Métodos: Se realizó una búsqueda sistemática en PubMed y Scopus (desde el año 2000 hasta el 13 de junio de 2025), de acuerdo con las directrices Elementos de informe preferidos para revisiones sistemáticas y metanálisis (PRISMA). Se incluyeron los estudios que incluían modelos in vivo de CP/CPPS inducidos por agentes químicos (p.ej., λ-carragenina, adyuvante completo de Freund). Los datos clave extraídos incluyeron especie y cepa, tipo y dosis de agente químico, diseño del grupo control, evaluaciones morfológicas y del dolor, e intervenciones terapéuticas. Resultados: Cincuenta y seis estudios cumplieron con los criterios de inclusión. Se utilizaron ratas con mayor frecuencia que ratones, con predominio de ratas Sprague-Drawly. La λ-carragenina fue el agente químico más utilizado para inducir CP/CPPS (en el 62.5% de los estudios). No se realizaron evaluaciones del comportamiento relacionado con el dolor en más de la mitad de los estudios incluidos (57%), mientras que la hiperalgesia mecánica se evaluó con mayor frecuencia que la hiperalgesia térmica. La validación morfológica se realizó en el 84% de los estudios, principalmente mediante tinción con hematoxilina y eosina y puntuación semicuantitativa. Las terapias probadas fueron diversas, incluyendo extractos de hierbas (39%), pero los protocolos de intervención variaron considerablemente. Conclusiones: Los modelos de CP/CPPS inducidos químicamente son valiosos para la investigación traslacional, pero se debe reducir la variabilidad metodológica significativa. Se necesitan protocolos estandarizados para la inducción, la validación y las evaluaciones del tratamiento para mejorar la reproducibilidad y la relevancia clínica de los modelos de CP/CPPS. Registro PROSPERO: El estudio se registró en PROSPERO (CRD420251106861).
Prostate; Animal models; Carrageenan; Complete Freund’s adjuvant; Pain
Palabras Clave
Próstata; Modelos animales; Carragenina; Adyuvante completo de Freund; Dolor
Nikola Šutulović,Neriman Ezgin,Emilija Đurić,Milena Vesković,Dušan Mladenović,Aleksandra Rašić-Marković,Olivera Stanojlović,Dragan Hrnčić. Methodological aspects of chemically-induced chronic prostatitis/chronic pelvic pain syndrome models: a systematic reviewAspectos metodológicos de los modelos de prostatitis crónica inducida químicamente/síndrome de dolor pélvico crónico: una revisión sistemática. Revista Internacional de Andrología. 2025. 23(4);22-35.
[1] Khattak AS, Raison N, Hawazie A, Khan A, Brunckhorst O, Ahmed K. Contemporary management of chronic prostatitis. Cureus. 2021; 13: e20243.
[2] Pontari MA, Ruggieri MR. Mechanisms in prostatitis/chronic pelvic pain syndrome. Journal of Urology. 2008; 179: S61–S67.
[3] Schaeffer AJ. Clinical practice. Chronic prostatitis and the chronic pelvic pain syndrome. The New England Journal of Medicine. 2006; 355: 1690–1698.
[4] Graziani A, Grande G, Martin M, Ferraioli G, Colonnello E, Iafrate M, et al. Chronic prostatitis/chronic pain pelvic syndrome and male infertility. Life. 2023; 13: 1700.
[5] He H, Luo H, Xu H, Qian B, Zou X, Zhang G, et al. Preclinical models and evaluation criteria of prostatitis. Frontiers in Immunology. 2023; 14: 1183895.
[6] Wang W, Naveed M, Baig MMFA, Abbas M, Xiaohui Z. Experimental rodent models of chronic prostatitis and evaluation criteria. Biomedicine & Pharmacotherapy. 2018; 108: 1894–1901.
[7] Lai H, Gereau RW IV, Luo Y, O’Donnell M, Rudick CN, Pontari M, et al. Animal models of urologic chronic pelvic pain syndromes: findings from the multidisciplinary approach to the study of chronic pelvic pain research network. Urology. 2015; 85: 1454–1465.
[8] Radhakrishnan R, Nallu RS. Development and characterisation of a novel animal model of prostate inflammation-induced chronic pelvic pain. Inflammopharmacology. 2009; 17: 23–28.
[9] Keetch DW, Humphrey P, Ratliff TL. Development of a mouse model for nonbacterial prostatitis. Journal of Urology. 1994; 152: 247–250.
[10] Vykhovanets EV, Resnick MI, MacLennan GT, Gupta S. Experimental rodent models of prostatitis: limitations and potential. Prostate Cancer and Prostatic Diseases. 2007; 10: 15–29.
[11] Yamaguchi H, Kurita M, Yoshinaga R, Asao Y, Oka M. Experimental rodent models of chronic prostatitis: effect of phosphodiesterase 5 inhibitor on chronic pelvic-pain-related behavior. Folia Pharmacologica Japonica. 2019; 154: 259–264.
[12] Cyril AC, Jan RK, Radhakrishnan R. Pain in chronic prostatitis and the role of ion channels: a brief overview. British Journal of Pain. 2022; 16: 50–59.
[13] Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. The BMJ. 2021; 372: n71.
[14] Ittmann M. Anatomy and histology of the human and murine prostate. Cold Spring Harbor Perspectives in Medicine. 2018; 8: a030346.
[15] Wang W, Chen R, Wang J. Procyanidin B2 ameliorates carrageenan-induced chronic nonbacterial prostatitis in rats via anti-inflammatory and activation of the Nrf2 pathway. Biochemical and Biophysical Research Communications. 2017; 493: 794–799.
[16] Han P, Lai YJ, Chen J, Zhang XN, Chen JL, Yang X, et al. Protective potential of the methanol extract of Macrothelypteris oligophlebia rhizomes for chronic non-bacterial prostatitis in rats. Pakistan Journal of Pharmaceutical Sciences. 2016; 29: 1217–1221.
[17] Zang L, Tian F, Yao Y, Chen Y, Shen Y, Han M, et al. Qianliexin capsule exerts anti‐inflammatory activity in chronic non-bacterial prostatitis and benign prostatic hyperplasia via NF-κB and inflammasome. Journal of Cellular and Molecular Medicine. 2021; 25: 5753–5768.
[18] Lu CF, Meng XH, Li HB, Wu H, Dou ZL. Effect of Phellodendron chinense extract on carrageenan-induced chronic prostatitis in rats. Tropical Journal of Pharmaceutical Research. 2015; 14: 257–262.
[19] Zhou Y, Wang JH, Han JP, Feng JY, Guo K, Du F, et al. Dihydroartemisinin ameliorates chronic nonbacterial prostatitis and epithelial cellular inflammation by blocking the E2F7/HIF1α pathway. Inflammation Research. 2022; 71: 449–460.
[20] Liu J, Liu L, Zhang G, Peng X. Poria cocos polysaccharides attenuate chronic nonbacterial prostatitis by targeting the gut microbiota: comparative study of Poria cocos polysaccharides and finasteride in treating chronic prostatitis. International Journal of Biological Macromolecules. 2021; 189: 346–355.
[21] Hajighorbani M, Ahmadi-hamedani M, Shahab E, Hayati F, Kafshdoozan K, Keramati K, et al. Evaluation of the protective effect of pentoxifylline on carrageenan-induced chronic non-bacterial prostatitis in rats. Inflammopharmacology. 2017; 25: 343–350.
[22] Chen J, Song H, Ruan J, Lei Y. Prostatic protective nature of the flavonoid-rich fraction from Cyclosorus acuminatus on carrageenan-induced non-bacterial prostatitis in rat. Pharmaceutical Biology. 2014; 52: 491–497.
[23] Yousefi S, Ahmadi-hamedani M, Narenji Sani R, Moslemi HR, Ghafari Khaligh S, Darvishi MM. Pentoxifylline mitigates detrimental impact of chronic nonbacterial prostatitis on sperm characteristics, reproductive hormones and histopathology in rats. Andrologia. 2018; 50: e12932.
[24] Ding HY, Qian WQ, Xu J. Effect of Achyranthes bidentata Blume extract on carrageenan-induced chronic prostatitis in rats. Tropical Journal of Pharmaceutical Research. 2017; 16: 855–859.
[25] Zhan XX, Mo DS, Cai HC, Xue S, Shang XJ. Effect of saw palmetto extract on the reproductive function of male rats with chronic prostatitis. National Journal of Andrology. 2019; 25: 399–402. (In Chinese)
[26] Zhang L, Liu Y, Chen XG, Zhang Y, Chen J, Hao ZY, et al. MicroRNA expression profile in chronic nonbacterial prostatitis revealed by next-generation small RNA sequencing. Asian Journal of Andrology. 2019; 21: 351–359.
[27] Wang XM, Wang DD, Wu YZ, Ma PD, Sun G, Xu Y. Effect of Alisma plantago-aquatica Linn extract on chronic prostatitis in rats. Tropical Journal of Pharmaceutical Research. 2017; 16: 1091–1095.
[28] Jiang J, Xiao F, Yang L, Zeng Y, Chen J, Zhu H, et al. Protective effect of astaxanthin on chronic prostatitis/chronic pelvic pain syndrome in rat through modulating NF-κB signaling pathway. Translational Andrology and Urology. 2024; 13: 1971–1983.
[29] Peixuan Z, Zeqi SU, Qiongyin F, Cai Z, Ting W. Network pharmacology and animal experiments revealed the protective effects of Guilong prescription on chronic prostatitis and its possible mechanisms. Journal of Traditional Chinese Medicine. 2025; 45: 89–99.
[30] Popovics P, Cai R, Sha W, Rick FG, Schally AV. Growth hormone‐releasing hormone antagonists reduce prostatic enlargement and inflammation in carrageenan-induced chronic prostatitis. The Prostate. 2018; 78: 970–980.
[31] Wu ZS, Wang HJ, Lee WC, Luo HL, Lin TK, Chuang YC. Low-energy shock wave suppresses prostatic pain and inflammation by modulating mitochondrial dynamics regulators on a carrageenan-induced prostatitis model in rats. International Journal of Molecular Sciences. 2023; 24: 3898.
[32] Yi J, Pan J, Zhang S, Mao W, Wang J, Wang W, et al. Improvement of chronic non-bacterial prostatitis by Jiedu Huoxue decoction through inhibiting TGF-β/SMAD signaling pathway. Biomedicine & Pharmacotherapy. 2022; 152: 113193.
[33] Šutulović N, Grubač Ž, Šuvakov S, Jerotić D, Puškaš N, Macut D, et al. Experimental chronic prostatitis/chronic pelvic pain syndrome increases anxiety-like behavior: the role of brain oxidative stress, serum corticosterone, and hippocampal parvalbumin-positive interneurons. Oxidative Medicine and Cellular Longevity. 2021; 2021: 6687493.
[34] Wang H, Liu Z, Xu X, Zhang H, He L, Li M. Calycosin protects against chronic prostatitis via regulating cellular pyroptosis. American Journal of Reproductive Immunology. 2025; 93: e70084.
[35] Šutulović N, Vesković M, Puškaš N, Zubelić A, Jerotić D, Šuvakov S, et al. Chronic prostatitis/chronic pelvic pain syndrome induces depression-like behavior and learning-memory impairment: a possible link with decreased hippocampal neurogenesis and astrocyte activation. Oxidative Medicine and Cellular Longevity. 2023; 2023: 3199988.
[36] Yi J, Pan J, Zhang S, Mao W, Wang J, Wang W, et al. Jiedu Huoxue decoction improves chronic abacterial prostatitis/chronic pelvic pain syndrome through activating Wnt/GSKβ/β-catenin signaling pathway and alleviating apoptosis. Biomedicine & Pharmacotherapy. 2022; 149: 112830.
[37] Song Z, Jin C, Bian Z, Liang C. Extracorporeal shock wave therapy decreases the number of total and degranulated mast cells and alleviates pelvic pain in a rat model of prostatitis. Molecular and Cellular Biochemistry. 2021; 476: 1905–1913.
[38] Aizawa N, Yamanishi T, Fujita T. Bladder sensation evaluation of a carrageenan-induced chronic prostatitis model using a direct measurement of the bladder mechanosensitive single-unit afferent nerve activity. Neurourology and Urodynamics. 2020; 39: 2111–2119.
[39] Ho DR, Chang PJ, Lin WY, Huang YC, Lin JH, Huang KT, et al. Beneficial effects of inflammatory cytokine-targeting aptamers in an animal model of chronic prostatitis. International Journal of Molecular Sciences. 2020; 21: 3953.
[40] Deng GC, Lu M, Zhao YY, Yuan Y, Chen G. Activated spinal astrocytes contribute to the later phase of carrageenan-induced prostatitis pain. Journal of Neuroinflammation. 2019; 16: 189.
[41] Šutulović N, Grubač Ž, Šuvakov S, Jovanović Đ, Puškaš N, Macut Đ, et al. Chronic prostatitis/chronic pelvic pain syndrome increases susceptibility to seizures in rats and alters brain levels of IL-1β and IL-6. Epilepsy Research. 2019; 153: 19–27.
[42] Zhang K, Zeng X, Chen Y, Zhao R, Wang H, Wu J. Therapeutic effects of Qian-Yu decoction and its three extracts on carrageenan-induced chronic prostatitis/chronic pelvic pain syndrome in rats. BMC Complementary and Alternative Medicine. 2017; 17: 75.
[43] Wang LL, Huang YH, Yan CY, Wei XD, Hou JQ, Pu JX, et al. N-acetylcysteine ameliorates prostatitis via miR-141 regulating Keap1/Nrf2 signaling. Inflammation. 2016; 39: 938–947.
[44] Zeng F, Chen H, Yang J, Wang L, Cui Y, Guan X, et al. Development and validation of an animal model of prostate inflammation-induced chronic pelvic pain: evaluating from inflammation of the prostate to pain behavioral modifications. PLOS ONE. 2014; 9: e96824.
[45] Yang X, Yuan L, Chen J, Xiong C, Ruan J. Multitargeted protective effect of Abacopteris penangiana against carrageenan-induced chronic prostatitis in rats. Journal of Ethnopharmacology. 2014; 151: 343–351.
[46] Chen CS, Chang PJ, Lin WY, Huang YC, Ho DR. Evidence of the inflammasome pathway in chronic prostatitis and chronic pelvic pain syndrome in an animal model. The Prostate. 2013; 73: 391–397.
[47] Xu X, Hou J, Lv J, Huang Y, Pu J, Wang L. Overexpression of lncRNA GAS5 suppresses prostatic epithelial cell proliferation by regulating COX-2 in chronic non-bacterial prostatitis. Cell Cycle. 2019; 18: 923–931.
[48] Jin L, Chen J, Fu J, Lou J, Guo Y, Liu X, et al. PARP1 exacerbates prostatitis by promoting M1 macrophages polarization through NF-κB Pathway. Inflammation. 2025; 48: 3022–3035.
[49] Long Y, Ge X, Ma L, Guo J, Zhu Y. Dioscin protects against chronic prostatitis through the TLR4/NF-κB pathway. Open Medicine. 2024; 19: 20241036.
[50] Zhao Q, Yang F, Meng L, Chen D, Wang M, Lu X, et al. Lycopene attenuates chronic prostatitis/chronic pelvic pain syndrome by inhibiting oxidative stress and inflammation via the interaction of NF-κB, MAPKs, and Nrf2 signaling pathways in rats. Andrology. 2020; 8: 747–755.
[51] Yang X, Chen Q, Ma M, Xie W, Gong B, Huang Y, et al. Expression and regulation of brain natriuretic peptide and natriuretic peptide receptor A (NPR-A) in L6-S1 dorsal root ganglia in a rat model of chronic nonbacterial prostatitis. Medical Science Monitor. 2019; 25: 9042–9047.
[52] Yang F, Meng L, Han P, Chen D, Wang M, Jiang Y, et al. New therapy with XLQ® to suppress chronic prostatitis through its anti-inflammatory and antioxidative activities. Journal of Cellular Physiology. 2019; 234: 17570–17577.
[53] Meng LQ, Yang FY, Wang MS, Shi BK, Chen DX, Chen D, et al. Quercetin protects against chronic prostatitis in rat model through NF-κB and MAPK signaling pathways. The Prostate. 2018; 78: 790–800.
[54] Lin L, Zhu BP, Cai L. Therapeutic effect of melittin on a rat model of chronic prostatitis induced by complete Freund’s adjuvant. Biomedicine & Pharmacotherapy. 2017; 90: 921–927.
[55] Zhang H, Liu L, Yang Z, Pan J, Chen Z, Fang Q, et al. P2X7 receptor mediates activation of microglial cells in prostate of chemically irritated rats. International Brazilian Journal of Urology. 2013; 39: 276–285.
[56] Zhang H, Liu L, Lu G, Chen Z, Fang Q, Yang Z, et al. Chemical irritation of the prostate sensitizes P2X3 receptor-mediated responses in rat dorsal root ganglion neurons. Neurourology and Urodynamics. 2011; 30: 612–618.
[57] Tang W, Song B, Zhou ZS, Lu GS. Intrathecal administration of resiniferatoxin produces analgesia against prostatodynia in rats. Chinese Medical Journal. 2007; 120: 1616–1621.
[58] Liu Y, Huang L, Zhang Z, Zhu Q, Xi P, Sun T, et al. Astaxanthin alleviates chronic prostatitis via the ERK1/2 signaling pathway: evidence from network pharmacology and experimental validation. Combinatorial Chemistry & High Throughput Screening. 2024. PMID: 39410896.
[59] Tian YQ, Ren X, Wang J, Li X, Yin YS, Guo ZH, et al. Berberine hydrochloride alleviates chronic prostatitis/chronic pelvic pain syndrome by modifying gut microbiome signaling. Asian Journal of Andrology. 2024; 26: 500–509.
[60] Mo J, Xia K, Wu C. Hedyotis diffusa Willd inhibits inflammation and oxidative stress to protect against chronic prostatitis via the NRF2/ARE signaling pathway. Environmental Toxicology. 2024; 39: 4221–4230.
[61] Zhang H, Gu R, Luo J, Zhong C, Pan J. Involvement of NOTCH1-mediated microglia activation in neuromodulation of chronic prostatitis-related pain. In Vivo. 2024; 38: 691–698.
[62] Peng X, Guo H, Chen J, Wang J, Huang J. The effect of pirfenidone on rat chronic prostatitis/chronic pelvic pain syndrome and its mechanisms. The Prostate. 2020; 80: 917–925.
[63] Chang XU, Na LI, Xiaoling WU, Xingye D, Zhiwen Y, Qianhui S, et al. Effect of electroacupuncture on inflammatory signal expression in local tissues of rats with chronic pelvic pain syndrome based on purinergic 2X7 receptor/NOD-like receptor pyrin domain-containing 3 signal pathway. Journal of Traditional Chinese Medicine. 2022; 42: 965–971.
[64] Wang HJ, Su CH, Chen YM, Yu CC, Chuang YC. Molecular effects of low-intensity shock wave therapy on L6 dorsal root ganglion/spinal cord and blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) changes in capsaicin-induced prostatitis rat models. International Journal of Molecular Sciences. 2022; 23: 4716.
[65] Aydogdu O, Gocun PU, Aronsson P, Carlsson T, Winder M. Cross-organ sensitization between the prostate and bladder in an experimental rat model of lipopolysaccharide (LPS)-induced chronic pelvic pain syndrome. BMC Urology. 2021; 21: 113.
[66] Kim HJ, Park JW, Cho YS, Cho CH, Kim JS, Shin HW, et al. Pathogenic role of HIF-1α in prostate hyperplasia in the presence of chronic inflammation. Biochimica et Biophysica Acta. 2013; 1832: 183–194.
[67] Park JS, Jin MH, Hong CH. Neurologic mechanisms underlying voiding dysfunction due to prostatitis in a rat model of nonbacterial prostatic inflammation. International Neurourology Journal. 2018; 22: 90–98.
[68] Song B, Jiang C, Wang Y, Lu Y, Li L. Newly found prostate-bladder neural reflex in rats—possible mechanism for voiding dysfunction associated with prostatitis/pelvic pain. Urology. 2009; 74: 1365–1369.
[69] Ni J, Ren S, Hu Y, Ma D, Kuang Y, Yoshimura N. Water-avoidance stress aggravates prostatic inflammation in a murine model of chronic prostatitis. Neurourology and Urodynamics. 2024; 43: 2249–2257.
[70] Ashok A, Keener R, Rubenstein M, Stookey S, Bajpai S, Hicks J, et al. Consequences of interleukin 1β-triggered chronic inflammation in the mouse prostate gland: altered architecture associated with prolonged CD4+ infiltration mimic’s human proliferative inflammatory atrophy. The Prostate. 2019; 79: 732–745.
[71] Lopes AH, Silva RL, Fonseca MD, Gomes FI, Maganin AG, Ribeiro LS, et al. Molecular basis of carrageenan-induced cytokines production in macrophages. Cell Communication and Signaling. 2020; 18: 141.
[72] Morris CJ. Carrageenan-induced paw edema in the rat and mouse. Methods in Molecular Biology. 2003; 225: 115–121.
[73] Billiau A, Matthys P. Modes of action of Freund's adjuvants in experimental models of autoimmune diseases. Journal of Leukocyte Biology. 2001; 70: 849–860.
[74] Mai L, Jia S, Liu Q, Chu Y, Liu J, Yang S, et al. Sympathectomy ameliorates CFA-induced mechanical allodynia via modulating phenotype of macrophages in sensory ganglion in mice. Journal of Inflammation Research. 2022; 15: 6263–6274.
[75] Manuel RS, Vezina CM. Trends in experimental autoimmune prostatitis: insights into pathogenesis, therapeutic strategies, and redefinition. American Journal of Clinical and Experimental Urology. 2024; 12: 52–63.
[76] Bleeker J, Wang ZA. Applications of vertebrate models in studying prostatitis and inflammation-associated prostatic diseases. Frontiers in Molecular Biosciences. 2022; 9: 898871.
[77] Deuis JR, Dvorakova LS, Vetter I. Methods used to evaluate pain behaviors in rodents. Frontiers in Molecular Neuroscience. 2017; 10: 284.
[78] Campana G, Rimondini R. Mechanical nociception in mice and rats: measurement with automated von Frey equipment. Methods in Molecular Biology. 2015; 1230: 229–231.
[79] Anderson RU, Wise D, Sawyer T, Chan CA. Sexual dysfunction in men with chronic prostatitis/chronic pelvic pain syndrome: improvement after trigger point release and paradoxical relaxation training. Journal of Urology. 2006; 176: 1534–1538; discussion 1538–1539.
[80] Sokmen D, Comez YI. Long-term efficacy and safety of extracorporeal shock wave therapy (Li-ESWT) protocols in the treatment of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) patients. The Aging Male. 2023; 26: 2253876.
[81] Yu Y, Jiang J, He Y, Wang W, Shen C, Yang B. Resveratrol improves urinary dysfunction in rats with chronic prostatitis and suppresses the activity of the stem cell factor/c-Kit signaling pathway. Molecular Medicine Reports. 2017; 16: 1395–1400.
[82] Aydogdu O, Perez F, Aronsson P, Uyar Gocun P, Carlsson T, Sandner P, et al. Treatment with the soluble guanylate cyclase activator BAY 60–2770 normalizes bladder function in an in vivo rat model of chronic prostatitis. European Journal of Pharmacology. 2022; 927: 175052.
[83] Zhang Y, Li X, Zhou K, Zhou M, Xia K, Xu Y, et al. Influence of experimental autoimmune prostatitis on sexual function and the anti-inflammatory efficacy of celecoxib in a rat model. Frontiers in Immunology. 2020; 11: 574212.
[84] Hu Y, Niu X, Wang G, Huang J, Liu M, Peng B. Chronic prostatitis/chronic pelvic pain syndrome impairs erectile function through increased endothelial dysfunction, oxidative stress, apoptosis, and corporal fibrosis in a rat model. Andrology. 2016; 4: 1209–1216.
[85] Gu Q, Luan J, Yu M, Xia J, Wang Z. Chronic prostatitis/chronic pelvic pain syndrome impairs erectile function by inducing apoptosis in a rat model of experimental autoimmune prostatitis. International Journal of Impotence Research. 2025; 37: 519–526.
[86] Wang XJ, Xia LL, Xu TY, Zhang XH, Zhu ZW, Zhang MG, et al. Changes in erectile organ structure and function in a rat model of chronic prostatitis/chronic pelvic pain syndrome. Andrologia. 2016; 48: 243–251.
[87] Wang GC, Huang TR, Hu YY, Wang KY, Shi H, Yin L, et al. Corpus cavernosum smooth muscle cell dysfunction and phenotype transformation are related to erectile dysfunction in prostatitis rats with chronic prostatitis/chronic pelvic pain syndrome. Journal of Inflammation. 2020; 17: 2.
[88] Lai HH, Pontari MA, Argoff CE, Bresler L, Breyer BN, Chou R, et al. Male chronic pelvic pain: AUA guideline: part I evaluation and management approach. Journal of Urology. 2025; 214: 116–126.
[89] Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLOS Biology. 2020; 18: e3000410.
Science Citation Index Expanded (SCIE)
Índice Bibliográfico Español en Ciencias de la Salud (IBECS)
Scopus: CiteScore 1.7 (2024)
Top